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1 Introduction
Boundary-value problems for systems of ordinary differential equations arise in many problems of
analysis and its applications. Unlike Cauchy problems, the solutions to such problems may not
exist or may not be unique. Thus, it is interesting to investigate the nature of the solvability
of inhomogeneous boundary-value problems in the functional Sobolev and Sobolev–Slobodetskiy
spaces and the dependence of their solutions on the parameter. For Fredholm boundary-value
problems, similar issues have been investigated in papers [1, 2, 4, 5, 7]. The case of underdefined or
overdefined boundary-value problems in Sobolev spaces was investigated in paper [3].

2 Statement of the problem
Let a finite interval (a, b) ⊂ R and parameters

{m, l} ⊂ N, s ∈ (1,∞) \ N, 1 ≤ p < ∞

be given. By Wn
p := Wn

p ([a, b];C) we denote a complex Sobolev space and set W 0
p := Lp. By

(Wn
p )

m := Wn
p ([a, b];Cm) and (Wn

p )
m×m := Wn

p ([a, b];Cm×m)

we denote the Sobolev spaces of vector functions and matrix functions, respectively, with elements
from the function space Wn

p . By ∥ · ∥n,p we denote the norms in these spaces. They are defined as
the sums of the corresponding norms of all elements of a vector-valued or matrix-valued function
in Wn

p . The space of functions (scalar functions, vector functions, or matrix functions) in which
the norm is introduced is always clear from the context. For m = 1 all these spaces coincide. It is
known that Wn

p are separable Banach spaces.
We denote by W s

p := W s
p ([a, b];C) where 1 ≤ p < ∞ and s > 1, is not integer, the Sobolev–

Slobodetskiy space of all complex-valued functions belonging to Sobolev space W
[s]
p and satisfying

the condition

∥f∥s,p := ∥f∥[s],p +
( b∫

a

b∫
a

|f [s](x)− f [s](y)|p

|x− y|1+{s}p dx dy

)1/p

< +∞,
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where [s] is the integer part, and {s} is the fractional part of the number s. Here, we recall that
∥ · ∥[s],p is the norm in the Sobolev space W

[s]
p . This equality defines the norm ∥f∥s,p in the

space W s
p .

Consider a linear boundary-value problem on a finite interval (a, b) for the system of m first-
order scalar differential equations

(Ly)(t) := y′(t) +A(t)y(t) = f(t), t ∈ (a, b), (2.1)
By = c, (2.2)

where the matrix function A( · ) belongs to the space (W s
p )

m×m, the vector function f( · ) belongs
to the space (W s

p )
m, the vector c belongs to the space Cl, and B is a linear continuous operator

B : (W s+1
p )m → Cl. (2.3)

The boundary condition (2.2) consists of l scalar boundary conditions for the system of m
differential equations of the first order. We represent vectors and vector functions in the form of
columns. A solution to the boundary-value problem (2.1), (2.2) is understood as a vector function
y ∈ (W s+1

p )m, satisfying equation (2.1) for s > 1 + 1/p everywhere and, for s ≤ 1 + 1/p, almost
everywhere on (a, b) and equality (2.2) specifying l scalar boundary conditions. The solutions to
equation (2.1) fill the space (W s+1

p )m, if its right-hand side f( · ) runs through the space (W s
p )

m.
Hence, the boundary condition (2.2) is the most general condition for this equation and includes all
known types of classical boundary conditions, namely, the Cauchy problem, two- and multipoint
problems, integral and mixed problems, and numerous nonclassical problems. The last class of
problems may contain derivatives of integer or fractional order k of required vector–functions,
where 0 < k < s+ 1.

The main purpose of this work is to establish whether the boundary-value problem (2.1), (2.2)
has the Fredholm property; to find its index and the dimension of the cokernel and the kernel of
the operator of an inhomogeneous boundary-value problem in terms of the properties of a special
rectangular numerical matrix and to investigate its stability. In the case of Sobolev spaces of integer
order, similar results were obtained in [6].

3 Main results
We rewrite the inhomogeneous boundary-value problem (2.1), (2.2) in the form of a linear operator
equation

(L,B)y = (f, c),

where (L,B) is a linear operator in the pair of Banach spaces

(L,B) : (W s+1
p )m → (W s

p )
m × Cl. (3.1)

Let X and Y be Banach spaces. Recall that a linear continuous operator T : X → Y is called a
Fredholm operator, if its kernel kerT and cokernel Y/T (X) are finite-dimensional. If the operator
is a Fredholm one, then its range T (X) is closed in Y , and the index

indT := dimkerT − dim
Y

T (X)

is finite (see, e.g., [6, Lemma 19.1.1]).

Theorem 3.1. The linear operator (3.1) is a bounded Fredholm operator with index m− l.
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Denote by Y ( · ) ∈ (W s
p )

m×m the unique solution to a linear homogeneous matrix equation

Y ′(t) +A(t)Y (t) = Om, t ∈ (a, b) (3.2)

with the initial condition
Y (a) = Im. (3.3)

Here, Om are zero matrices, and Im are identity (m×m) matrices. The unique solution to the
Cauchy problem (3.2), (3.3) belongs to the space (W s+1

p )m×m.
By [BY ] we denote a numerical matrix of dimension (m × l) whose i-th column is a result of

the action of the operator B from (2.3) on i-th column of the matrix function Y ( · ), i ∈ {1, . . . ,m}.

Definition. A rectangular numerical matrix

M(L,B) = [BY ] ∈ Cm×l (3.4)

is called the characteristic matrix for the inhomogeneous boundary-value problem (2.1), (2.2).

Here, m is the number of scalar differential equations of system (2.1), and l is the number of
scalar boundary conditions.

Theorem 3.2. The dimensions of the kernel and cokernel of operator (3.1) are equal to the
dimensions of the kernel and cokernel of the characteristic matrix (3.4), respectively:

dimker(L,B) = dimker(M(L,B)),

dim coker(L,B) = dim coker(M(L,B)).

A criterion for the invertibility of the operator (L,B) follows from Theorem 3.2, i.e., the con-
dition under which problem (2.1), (2.2) possesses a unique solution, and this solution continuously
depends on the right-hand sides of the differential equation and the boundary condition.

Corollary 3.1. Operator (L,B) is invertible if and only if l = m and the square matrix M(L,B)
is nondegenerate.

4 Application
In addition to problem (2.1), (2.2) we consider the sequence of inhomogeneous boundary-value
problems

L(k)y(t, k) := y′(t, k) +A(t, k)y(t, k) = f(t, k), t ∈ (a, b), (4.1)
B(k)y( · , k) = c(k), k ∈ N, (4.2)

where the matrix functions A( · , k), the vector functions f( · , k), the vectors c(k) and linear con-
tinuous operators B(k) satisfy the above conditions for problem (2.1), (2.2).

With the boundary-value problem (4.1), (4.2) we associate a sequence of linear continuous op-
erators

(L(k), B(k)) : (W s+1
p )m → (W s

p )
m × Cl

and a sequence of characteristic matrices

M(L(k), B(k)) = [B(k)Y ( · , k)] ⊂ Cm×l,

depending on the parameter k ∈ N.
We now formulate a sufficient condition for the convergence of the characteristic matrices

M(L(k), B(k)) to the matrix M(L,B).
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Theorem 4.1. If the sequence of operators (L(k), B(k)) converges strongly to the operator (L,B),
for k → ∞, then the sequence of characteristic matrices M(L(k), B(k)) converges to the matrix
M(L,B).

Corollary 4.1. Under the assumptions from Theorem 4.1, the following inequalities hold

dimker(L(k), B(k)) ≤ dimker(L,B),

dim coker(L(k), B(k)) ≤ dim coker(L,B)

for sufficiently large k.

In particular:

1. If l = m and the operator(L,B) is invertible, then the operators (L(k), B(k)) are also inver-
tible for large k;

2. If the boundary-value problem (2.1), (2.2) has a solution for any values of the right-hand
sides, then the boundary-value problems (4.1), (4.2) also have a solution for large k;

3. If the boundary-value problem (2.1), (2.2) has a unique solution, then problems (4.1), (4.2)
also have a unique solution for each sufficiently large k.
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