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1 Introduction
Consider solutions to the third order differential equation with general power-law nonlinearities

y′′′ + p(x, y, y′, y′′)|y|k0 |y′|k1 · · · |y′′|k2 sgn(yy′y′′) = 0, (1.1)

with positive real nonlinearity exponents k0, k1, k2 and positive continuous in x and Lipschitz
continuous in u0, u1, u2 bounded function p(u0, u1, u2).

The results on qualitative behavior and asymptotic estimates of positive increasing solutions for
higher order nonlinear differential equations were obtained by I. T. Kiguradze and T. A. Chanturia
in [9]. Questions on qualitative and asymptotic behavior of solutions to higher order Emden–Fowler
differential equations (k1 = · · · = kn−1 = 0) were studied by I. V. Astashova in [1, 2, 5, 6].

Equation (1.1) in the case k0 > 0, k0 ̸= 1, k1 = k2 = 0, was studied by I. Astashova in [2,
Chapters 6–8]. In particular, asymptotic classification of solutions to such equations was given
in [4, 6], and proved in [3]. For third order and higher order differential equations, nonlinear with
respect to derivatives of solutions, the asymptotic behavior of certain types of solutions was studied
by V. M. Evtukhov, A. M. Klopot in [7, 8]. Qualitative properties of solutions to (1.1) in the case
p(x, y, y′, y′′) < 0 were studied in [10].

2 Main results
Since solutions to equation (1.1) are not always unique, in order to obtain the full classification the
following notion of µ-solutions is used.

Definition ([1]). A solution y : (a, b) → R, −∞ ≤ a < b ≤ +∞ to an ordinary differential equation
is a µ-solution, if

(1) the equation has no other solutions equal to y on some subinterval (a, b) and not equal to y
at some point in (a, b);

(2) the equation either has no solution equal to y on (a, b) and defined on another interval
containing (a, b) or has at least two such solutions which differ from each other at points
arbitrary close to the boundary of (a, b).

Theorem 2.1. Let the function p(u0, u1, u2) be continuous, Lipschitz continuous in u0, u1, u2 and
satisfying the inequalities 0 < m ≤ p(u0, u1, u2) ≤ M . Then any µ-solution y(x) to equation (1.1)
according to its qualitative behavior belongs to one of the following types:

(1) constant function y(x) ≡ y0;
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(2) linear function y(x) = ax+ b, a ̸= 0;

(3) function with exactly one extremum.

Remark. Let the function p(u0, u1, u2) be continuous, Lipschitz continuous in u0, u1, u2 and
satisfying the inequalities 0 < m ≤ p(x, u, v, w) ≤ M . Then the replacemenets x 7→ −x and
y(x) 7→ −y(x) reduce equation (1.1) to the equation

z′′′ + p̃(x, z, z′, z′′)|z|k0 |z′|k1 |z′′|k2 sgn(zz′z′′) = 0,

with the function p̃(u0, u1, u2) also continuous, Lipschitz continuous in u0, u1, u2 and satisfying the
inequalities 0 < m ≤ p(u0, u1, u2) ≤ M .

Thus, it is sufficient to consider the behavior of the solutions with positive initial data near the
right boundaries of their domains. In the case of a constant potential p(u0, u1, u2) the following
results of the behavior of solutions was obtained.

Theorem 2.2. Let k2 − k0 ̸= 2 and p(u0, u1, u2) ≡ p0 > 0. Then any µ-solution y(x) to (1.1),
satisfying at some point x0 the conditions y(x0) ≥ 0, y′(x0) ≥ 0, y′′(x0) > 0 has the following
behavior near the right boundary of its domain:

(1) if 0 < k2 ≤ 1, then there exists x∗ < +∞ such that y(x), y′(x) → const, y′′(x) → 0 as
x → x∗ − 0;

(2) if 1 < k2 ≤ 2, then y(x) → +∞, y′(x) → const, y′′(x) → 0 as x → +∞;

(3) if 2 < k2 < 2 + k0, then y(x) → +∞, y′(x) → const, y′′(x) → 0 as x → +∞ or y(x),
y′(x) → +∞, y′′(x) → 0 as x → +∞;

(4) if k2 > 2 + k0, then y(x), y′(x) → +∞, y′′(x) → 0 as x → +∞.
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