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1 Introduction
For a given n ∈ N, let M̃n denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1.1)

with piecewise continuous coefficients, which are matrix-valued functions A : R+ → Rn×n, and by
Mn its subclass that consists of systems with coefficients that are bounded on the semiaxis R+. In
what follows, we identify system (1.1) with its defining function A( · ) and therefore write A ∈ Mn

and the like. The vector space of solutions of system (1.1) will be denoted by S(A) and the set of
its nonzero solutions by S∗(A) (i.e. S∗(A) = S(A) \ {0}).

The following definition is due to O. Perron [19].
The lower exponent of a vector-function x : R+ → Rn

∗ ≡ Rn \ {0} is the quantity

π[x] = lim
t→+∞

1

t
ln ∥x(t)∥. (1.2)

Note that a lower exponent may well be infinite and hence is generally a point of the extended real
line R ≡ R ⊔ {−∞,+∞}, which we equip with the standard order and the order topology.

Assigning to each solution x( · ) ∈ S∗(A) of system (1.1) its lower exponent π[x], we obtain
the functional πA : S∗(A) → R, which is called the lower exponent of system (1.1). Obviously, if
A ∈ Mn, then the range of the functional πA is contained in a bounded interval. Such defined
functionals πA have different domains, which is not always convenient. In order to have a unified
view of these functionals and to make it possible to compare them with one another, they are put in
one-to-one correspondence with functions defined on Rn

∗ . Namely, there is a natural isomorphism
ιA : Rn → S(A) defined by ξ 7→ x( · , ξ), where x( · , ξ) is the solution of the system A starting at
the initial moment t = 0 from the vector ξ ∈ Rn. Then the function πA : Rn

∗ → R defined by
πA = πA ◦ iA is called the Perron exponent of system (1.1). As said above, πA takes finite values
and is bounded wherever A ∈ Mn.

The Perron exponent is one of a number of asymptotic characteristics, which are functionals
defined on solutions of differential systems and reflecting one or another of their qualitative or
asymptotic properties. Historically, the first in this series was the Lyapunov exponent λA [18],
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which is of fundamental importance in the stability theory. As is well known, it is defined similarly
to the Perron exponent with the replacement in (1.2) of the lower limit by the upper one. Several
different asymptotic characteristics are proposed by I. N. Sergeev (see, e.g., [20, 21]).

Lower exponents are introduced by O. Perron [19] by analogy with Lyapunov characteristic
exponents, and he was the first to observe that some of their properties differ from those of Lyapunov
exponents. At the same time no serious research of qualitative properties of solutions that Perron
exponents represent has been carried out until recently. Situation has changed since the publication
of works [22, 23], in which Perron stability was defined and some properties of this notion were
treated.

The first problem that arises when studying an asymptotic characteristic is to completely de-
scribe it as a function of an initial vector for linear differential systems, that is, for example, for the
Perron exponent it is required to obtain a complete description of the following function classes:

Pn =
{
πA : A ∈ Mn

}
and P̃n =

{
πA : A ∈ M̃n

}
. (1.3)

To date solutions to these problems are only known for the Lyapunov exponent [18], [7, p. 25–26]
and the lower and upper Bohl exponents [5, 6] (definition of the two latter ones see in [8, p. 171–
172], [24]). It is worth remarking that whereas a description of the Lyapunov exponent involves
linear algebra concepts, that of the Bohl exponents requires the language of descriptive function
theory, and so is the case for classes (1.3). A description of the second of these is given in the
report, while a description of the first one is unknown so far.

Let us provide a number of properties of the Perron exponent that demonstrate its fundamental
difference from the Lyapunov exponent, which seems outwardly similar.

A. M. Lyapunov [18], [7, p. 30] established that the number of different values that the Lyapunov
exponent of a system A ∈ Mn takes does not exceed its dimension n. O. Perron discovered [19]
that for his eponymous exponent this is not the case. He gave an example of a two-dimensional
diagonal system with bounded coefficients whose Perron exponent takes exactly three different
values. N. A. Izobov showed [15] that the Perron exponent of a diagonal system (1.1) takes no
more than 2n−1 values, and in the work [1] for every integer m ∈ [1, 2n−1] a diagonal system (1.1)
is constructed such that its Perron exponent takes exactly m different values.

For non-diagonal systems the structure of the range of the Perron exponent may be much more
complicated: in the work [16] a system is constructed such that the lower exponents of its solutions
fill an entire interval, and in [2] it is proved that a set P is the range of the Perron exponent of a
system A ∈ Mn if and only if P is a bounded Suslin set containing its sup.

Despite these differences in structure of the ranges of the Lyapunov and Perron exponents
of system (1.1), Lebesgue sets of restrictions of these functionals to affine subspaces have some
similarity. So, N. A. Izobov established [15,17] that for any A ∈ Mn and affine subspace Πk ⊂ Rn

of dimension k (1 ≤ k ≤ n) the set

P (Πk) ≡
{
ξ ∈ Πk \ {0} : π(ξ) < sup

ζ∈Πk\{0}
π(ζ)

}
has zero k-dimensional Lebesgue measure, i.e.

mesP (Πk) = 0. (1.4)

In other words, the set of lower exponents of solutions with the initial vectors from an affine plane
Πk contains its sup, and for almost all (with respect to Lebesgue measure) initial vectors from
Πk, the corresponding solutions starting from them have lower exponents equal to this sup. For
one-dimensional affine subspaces the specified property can be strengthened [3]: for any affine line
Π1, the set P (Π1) has zero Hausdorf lnν | ln( · )|-measure for all ν < −1.
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It is easy to verify [4] that P (Π1) is a Gδσ-set and πA is Baire 2. These statements and the above-
cited statements from [3] are unimprovable [4]: for each n ≥ 2 there exists a system A ∈ Mn such
that for a certain line Π1 the set P (Π1) is exactly Gδσ with infinite Hausdorf ln−1 | ln( · )|-measure
and the function πA is exactly Baire 2.

A. G. Gargyants [10] discovered that for systems in M̃n \ Mn for n > 2 property (1.4) is
generally not valid: he constructed a system A ∈ M̃n such that for any k-dimensional (1 ≤ k ≤ n)
affine subspace Πk ⊂ Rn, different from a line containing the origin, the set Πk \ P (Πk) has zero
k-dimensional Lebesgue measure and is of the first Baire category with respect to Πk. He also
proved [12] that property (1.4) holds for all systems A ∈ M̃n satisfying

lim
t→+∞

t−1 ln ∥A(t)∥ ≤ 0.

A natural question arises: is the set P (Πk) of the first Baire category with respect to Πk for
any n > 2, k = 1, . . . , n, and system in Mn? The answer (in the negative) was obtained by
A. G. Gargyants [14]: for each n ≥ 2 there exists a system A ∈ Mn such that the set Rn \ P (Rn)
is of the first Baire category.

2 The main result
The problem is to obtain for each n ≥ 2 a set-theoretic description of Perron exponents of systems
in M̃n, i.e. of the function class P̃n defined in (1.3). Note that a description of the classes P1 and
P̃1 is trivial: they consist of all constant functions R1

∗ → R and R1
∗ → R, respectively.

A. G. Gargyants obtained [11, 13] progress in this problem: he proved that for any n ≥ 2 the
class P̃ncontains all continuous functions f : Rn

∗ → R satisfying the condition

f(cξ) = f(ξ), ξ ∈ Rn
∗ , c ∈ R∗. (2.1)

In [9], this result was extended to upper semicontinuous functions.
For every n ≥ 2, a complete description of the class P̃n is provided by the following

Theorem. A function f : Rn
∗ → R belongs to the class P̃n if and only if it satisfies (2.1) and for

all r ∈ R, the inverse image f−1([−∞, r]) of the closed ray [−∞, r] is a Gδ-set in Rn
∗ .
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