A Problem for a Family of Partial Integro-Differential Equations with Weakly Singular Kernels

A. T. Assanova

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan E-mails: assanova@math.kz; anartasan@gmail.com

On the domain $\Omega = [0, T] \times [0, \omega]$, we consider the family of problems for the system of partial integro-differential equations with weakly singular kernels

$$\frac{\partial v}{\partial t} = A(t,x)v + \int_{0}^{T} K(t,s,x)v(s,x)\,ds + f(t,x),\tag{1}$$

$$P(x)v(0,x) + S(x)v(T,x) = \varphi(x), \quad x \in [0,\omega],$$

$$(2)$$

where $v(t,x) = col(v_1(t,x), v_2(t,x), \ldots, v_n(t,x))$ is an unknown vector function, the $(n \times n)$ matrix A(t,x), and n vector function f(t,x) are continuous on Ω , the $(n \times n)$ matrix K(t,s,x) has the form $K(t,s,x) = \frac{1}{|t-s|^{\alpha}} H(t,s,x)$, and the $(n \times n)$ matrix H(t,s,x) is continuous on $[0,T] \times [0,T] \times [0,\omega]$, $0 < \alpha < 1$, the $(n \times n)$ matrices P(x), S(x) and n vector function $\varphi(x)$ are continuous on $[0,\omega]$.

A continuous function $v : \Omega \to \mathbb{R}^n$ that has a continuous derivative with respect to t on Ω is called a solution to the family problems for the system of integro-differential equations (1), (2) if it satisfies system (1) and condition (2) for all $(t, x) \in \Omega$ and $x \in [0, \omega]$, respectively.

Partial integro-differential equations and various problems for them are arisen as mathematical models of various physical processes [2, 3, 25]. Boundary value problems for ordinary integrodifferential equations with continuous kernels and weakly singular or other nonsmooth kernels were researched in [1,4–11,13,14,16–24] by the different methods. Some problems for partial integrodifferential equations with singular kernels were considered in [26–33].

Nevertheless, the establishment of conditions for the solvability of the family problems for partial integro-differential equations with weakly singular kernels is an actual problem.

The aim of the present communication is to apply the Dzhumabaev parametrization method [12] and the results of article [4] to the family of partial integro-differential equations with weakly singular kernels.

For this we construct a homogeneous family of partial integral equations with weakly singular kernels of the second kind and introduce an analog of regular partition for Ω by the initial data of the partial integro-differential equation (1).

For fixed $x \in [0, \omega]$ problem (1), (2) is a linear problem for the system of integro-differential equations with weakly kernels. Suppose a variable x is changed on $[0, \omega]$; then we obtain a family of problems for partial integro-differential equations with weakly kernels.

Let us divide domain Ω equally into N parts and denote this partition by Δ_N :

$$\Delta_N = \{ t_0 = 0 < t_1 < \dots < t_N = T, \ 0 \le x \le \omega \}.$$

where $t_s = sT/N$.

By $v_r(t, x)$ we denote the restriction of the function v(t, x) to the r-th domain $\Omega_r = [t_{r-1}, t_r) \times [0, \omega]$, i.e. $v_r(t, x) = v(t, x), (t, x) \in \Omega_r, r = 1 : N$.

Inputting the functional parameters $\lambda_r(x) = v_r(t_{r-1}, x)$ and performing the substitution of functions $z_r(t, x) = v_r(t, x) - \lambda_r(x)$ in each of the *r*-th domain, we obtain the following problem with parameters:

$$\frac{\partial z_r}{\partial t} = A(t,x)(z_r + \lambda_r(x)) + \sum_{j=1}^N \int_{t_{j-1}}^{t_j} K(t,s,x)(z_j(s,x) + \lambda_j(x)) \, ds + f(t,x), \quad (t,x) \in \Omega_r, \tag{3}$$

$$z_r(t_{r-1}, x) = 0, \ x \in [0, \omega], \ r = 1 : N,$$
(4)

$$P(x)\lambda_1(x) + S(x)\lambda_N(x) + S(x)\lim_{t \to T-0} z_N(t,x) = \varphi(x), \quad x \in [0,\omega],$$
(5)

$$\lambda_p(x) + \lim_{t \to t_p = 0} z_p(t, x) - \lambda_{p+1}(x) = 0, \ x \in [0, \omega], \ p = 1 : (N - 1),$$
(6)

where (6) are the conditions of continuity for the solution at the inner lines of the partition Δ_N .

Introduction of additional parameters [4–11] lets us obtain the initial data (5). Thus, it is possible to determine the system of functions z([t], x) from the family of special Cauchy problems for the systems of integro-differential equations with weakly singular kernels (5), (6) for fixed values of the parameters $\lambda(x) \in C([0, \omega], \mathbb{R}^{nN})$. By using the fundamental matrix U(t, x) of the differential equation $\frac{\partial v}{\partial t} = A(t, x)v$, we reduce problem (5), (6) to the equivalent system of integral equations

$$z_{r}(t,x) = U(t,x) \int_{t_{r-1}}^{t} U^{-1}(\tau_{1},x) \sum_{j=1}^{N} \int_{t_{j-1}}^{t_{j}} K(\tau_{1},s,x) (z_{j}(s,x) + \lambda_{j}(x)) \, ds \, d\tau_{1} \\ + U(t,x) \int_{t_{r-1}}^{t} U^{-1}(\tau_{1},x) \left[A(\tau_{1},x)\lambda_{r}(x) + f(\tau_{1},x) \right] d\tau_{1}, \quad (t,x) \in \Omega_{r}, \quad r = 1:N.$$
(7)

Introduce the notations

$$\begin{split} \Phi(\Delta_N, t, x, \alpha) &= \sum_{j=1}^N \int_{t_{j-1}}^{t_j} K(t, s, x) z_j(s, x) \, ds, \\ M(\Delta_N, t, x, \tau, \alpha) &= \int_{\tau}^{t_j} K(t, \tau_1, x) U(\tau_1, x) \, d\tau_1 U^{-1}(\tau, x), \quad (t, x) \in \Omega, \ \tau \in [t_{j-1}, t_j), \ j = 1:N, \\ M(\Delta_N, t, x, T, \alpha) &= 0. \end{split}$$

Consider the following family of integral equations of the second kind with weakly singular kernel

$$\Phi(\Delta_N, t, x, \alpha) = \int_0^T M(\Delta_N, t, x, \tau, \alpha) \Phi(\Delta_N, \tau, x, \alpha) d\tau + D(\Delta_N, t, x, \alpha) \lambda + F(\Delta_N, t, x, \alpha), \quad (8)$$

and the corresponding homogeneous family of integral equations

$$\Phi(\Delta_N, t, x, \alpha) = \int_0^T M(\Delta_N, t, x, \tau, \alpha) \Phi(\Delta_N, \tau, x, \alpha) \, d\tau, \quad (t, x) \in \Omega.$$
(9)

Definition. A partition Δ_N is called regular if the family of integral equations with weakly singular kernel (9) has only a trivial solution.

The set of regular partitions Δ_N is denoted by $\sigma([0,T], x, \alpha)$. As it is known from the theory of integral equations with singular kernels [15], if $\Delta_N \in \sigma([0,T], x, \alpha)$, then (8) has a unique solution for any $\lambda(x) \in C([0, \omega], \mathbb{R}^{nN})$, $F(\Delta_N, t, x, \alpha) \in C(\Omega, \mathbb{R}^n)$, and this solution can be presented in the form

$$\Phi(\Delta_N, t, x, \alpha) = D(\Delta_N, t, x, \alpha)\lambda + F(\Delta_N, t, x, \alpha) + \int_0^T \Gamma(\Delta_N, t, x, s, 1) (D(\Delta_N, s, x, \alpha)\lambda(x) + F(\Delta_N, s, x, \alpha)) ds, \quad (t, x) \in \Omega, \quad (10)$$

where $\Gamma(\Delta_N, t, x, s, 1)$ is the resolvent of the family of integral equations with weakly singular kernel (8). The $n \times nN$ matrix $D(\Delta_N, t, x, \alpha) = (D_r(\Delta_N, t, x, \alpha)), r = 1 : N$, continuous on Ω , and vector $F(\Delta_N, t, x, \alpha)$ are constructed by the integral representation (7):

$$D_{r}(\Delta_{N}, t, x, \alpha) = \int_{t_{r-1}}^{t_{r}} K(t, \tau, x) U(\tau, x) \int_{t_{r-1}}^{\tau} U^{-1}(\tau_{1}, x) A(\tau_{1}, x) d\tau_{1} d\tau$$
$$+ \sum_{j=1}^{N} \int_{t_{j-1}}^{t_{j}} K(t, \tau, x) U(\tau, x) \int_{t_{j-1}}^{\tau} U^{-1}(\tau_{1}, x) \int_{t_{r-1}}^{t_{r}} K(\tau_{1}, s, x) ds d\tau_{1} d\tau,$$
$$F(\Delta_{N}, t, x, \alpha) = \sum_{j=1}^{N} \int_{t_{j-1}}^{t_{j}} K(t, \tau, x) U(\tau, x) \int_{t_{j-1}}^{\tau} U^{-1}(\tau_{1}, x) f(\tau_{1}, x) d\tau_{1} d\tau.$$

Substituting $\sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} K(t,s,x) z_j(s,x) ds$ in (7) with the right-hand side of (10), we get the repre-

sentation of the function $z_r(t,x)$ in terms of $\lambda(x) \in C([0,\omega], \mathbb{R}^{nN})$, $f(t,x) \in C(\Omega, \mathbb{R}^n)$. Then, using this representation, we determine $\lim_{t \to T-0} z_N(t,x)$, $\lim_{t \to t_p=0} z_p(t,x)$, p = 1 : (N-1). Substituting these

expressions in (5), (6) and multiplying both sides of (5) by $h = \frac{T}{N}$, we get the following linear system of equations for the introduced parameters $\lambda_r(x)$, r = 1 : N:

$$Q^*(\Delta_N, x, \alpha)\lambda(x) = -F^*(\Delta_N, x, \alpha), \ \lambda(x) \in C([0, \omega], \mathbb{R}^{nN}).$$
(11)

Theorem 1. If the matrix $Q^*(\Delta_N, x, \alpha) : \mathbb{R}^{nN} \to \mathbb{R}^{nN}$ in the partition $\Delta_N \in \sigma([0, T], x, \alpha)$ is invertible for all $x \in [0, \omega]$, then the family of problems for the system of partial integro-differential equations with weakly singular kernels (1), (2) has a unique solution.

Theorem 2. For the unique solvability of family of problems for the system of partial integrodifferential equations with weakly singular kernels (1), (2) it is necessary and sufficient that the matrix $Q^*(\Delta_N, x, \alpha) : \mathbb{R}^{nN} \to \mathbb{R}^{nN}$ be invertible for any $\Delta_N \in \sigma([0, T], x, \alpha)$ and for all $x \in [0, \omega]$.

Acknowledgment

This research has been funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant # AP09258829).

References

- E. A. Bakirova, N. B. Iskakova and A. T. Asanova, A numerical method for solving a linear boundary value problem for integrodifferential equations based on spline approximation. (Russian) Ukraïn. Mat. Zh. 71 (2019), no. 9, 1176–1191; translation in Ukrainian Math. J. 71 (2020), no. 9, 1341–1358.
- [2] A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems. (Russian) VSP, Utrecht, 2004.
- [3] Brunner, Hermann. Collocation methods for Volterra integral and related functional differential equations. Cambridge Monographs on Applied and Computational Mathematics, 15. Cambridge University Press, Cambridge, 2004.
- [4] D. S. Dzhumabaev, On a method for solving a linear boundary value problem for an integrodifferential equation. (Russian) Zh. Vychisl. Mat. Mat. Fiz. 50 (2010), no. 7, 1209–1221; translation in Comput. Math. Math. Phys. 50 (2010), no. 7, 1150–1161.
- [5] D. S. Dzhumabaev, An algorithm for solving a linear two-point boundary value problem for an integrodifferential equation. (Russian) Zh. Vychisl. Mat. Mat. Fiz. 53 (2013), no. 6, 914–937; translation in Comput. Math. Math. Phys. 53 (2013), no. 6, 736–758.
- [6] D. S. Dzhumabaev, Necessary and sufficient conditions for the solvability of linear boundaryvalue problems for the Fredholm integrodifferential equations. (Russian) Ukrain. Mat. Zh. 66 (2014), no. 8, 1074–1091; translation in Ukrainian Math. J. 66 (2015), no. 8, 1200–1219.
- [7] D. S. Dzhumabaev, Solvability of a linear boundary value problem for a Fredholm integrodifferential equation with impulsive inputs. (Russia) *Differ. Uravn.* **51** (2015), no. 9, 1189– 1205; translation in *Differ. Equ.* **51** (2015), no. 9, 1180–1196.
- [8] D. S. Dzhumabaev, On one approach to solve the linear boundary value problems for Fredholm integro-differential equations. J. Comput. Appl. Math. **294** (2016), 342–357.
- [9] D. S. Dzhumabaev and E. A. Bakirova, Criteria for the correct solvability of a linear two-point boundary value problem for systems of integrodifferential equations. (Russian) *Differ. Uravn.* 46 (2010), no. 4, 550–564; translation in *Differ. Equ.* 46 (2010), no. 4, 553–567.
- [10] D. S. Dzhumabaev and E. A. Bakirova, Criteria for the unique solvability of a linear two-point boundary value problem for systems of integro-differential equations. (Russian) *Differ. Uravn.* **49** (2013), no. 9, 1125–1140; translation in *Differ. Equ.* **49** (2013), no. 9, 1087–1102.
- [11] D. S. Dzhumabaev and E. A. Bakirova, On the unique solvability of a boundary value problem for systems of Fredholm integro-differential equations with a degenerate kernel. (Russian) *Nelīnīinī Kolıv.* 18 (2015), no. 4, 489–506; translation in *J. Math. Sci. (N.Y.)* 220 (2017), no. 4, 440–460.
- [12] D. S. Dzhumabayev, Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation. USSR Computational Mathematics and Mathematical Physics 29 (1989), no. 1, 34–46.
- [13] R. Kangro and E. Tamme, On fully discrete collocation methods for solving weakly singular integro-differential equations. *Math. Model. Anal.* 15 (2010), no. 1, 69–82.
- [14] M. Kolk, A. Pedas and G. Vainikko, High-order methods for Volterra integral equations with general weak singularities. *Numer. Funct. Anal. Optim.* **30** (2009), no. 9-10, 1002–1024.
- [15] N. I. Muskhelishvili, Singular Integral Equations. Boundary Value Problems in the Theory of Function and Some Applications of them to Mathematical Physics. (Russian) Izdat. "Nauka", Moscow, 1968.

- [16] K. Orav-Puurand, A. Pedas and G. Vainikko, Nyström type methods for Fredholm integral equations with weak singularities. J. Comput. Appl. Math. 234 (2010), no. 9, 2848–2858.
- [17] I. Parts, A. Pedas and E. Tamme, Piecewise polynomial collocation for Fredholm integrodifferential equations with weakly singular kernels. SIAM J. Numer. Anal. 43 (2005), no. 5, 1897–1911.
- [18] A. Pedas and E. Tamme, Spline collocation method for integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 197 (2006), no. 1, 253–269.
- [19] A. Pedas and E. Tamme, Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 213 (2008), no. 1, 111–126.
- [20] A. Pedas and E. Tamme, A discrete collocation method for Fredholm integro-differential equations with weakly singular kernels. Appl. Numer. Math. 61 (2011), no. 6, 738–751.
- [21] A. Pedas and E. Tamme, Product integration for weakly singular integro-differential equations. Math. Model. Anal. 16 (2011), no. 1, 153–172.
- [22] A. Pedas and E. Tamme, On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 235 (2011), no. 12, 3502–3514.
- [23] A. Pedas and E. Tamme, Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236 (2012), no. 13, 3349–3359.
- [24] A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 255 (2014), 216–230.
- [25] A.-M. Wazwaz, Linear and Nonlinear Integral Equations. Methods and Applications. Higher Education Press, Beijing; Springer, Heidelberg, 2011.
- [26] X. Xu and D. Xu, A semi-discrete scheme for solving fourth-order partial integro-differential equation with a weakly singular kernel using Legendre wavelets method. *Comput. Appl. Math.* 37 (2018), no. 4, 4145–4168.
- [27] D. Xu, W. Qiu and J. Guo, A compact finite difference scheme for the fourth-order timefractional integro-differential equation with a weakly singular kernel. *Numer. Methods Partial Differential Equations* **36** (2020), no. 2, 439–458.
- [28] X. Yang, D. Xu and H. Zhang, Quasi-wavelet based numerical method for fourth-order partial integro-differential equations with a weakly singular kernel. Int. J. Comput. Math. 88 (2011), no. 15, 3236–3254.
- [29] X. Yang, D. Xu and H. Zhang, Crank–Nicolson/quasi-wavelets method for solving fourth order partial integro-differential equation with a weakly singular kernel. J. Comput. Phys. 234 (2013), 317–329.
- [30] T. K. Yuldashev and S. K. Zarifzoda, New type super singular integro-differential equation and its conjugate equation. *Lobachevskii J. Math.* 41 (2020), no. 6, 1123–1130.
- [31] T. K. Yuldashev and S. K. Zarifzoda, Mellin transform and integro-differential equations with logarithmic singularity in the kernel. *Lobachevskii J. Math.* 41 (2020), no. 9, 1910–1917.
- [32] T. K. Yuldashev and S. K. Zarifzoda, On a new class of singular integro-differential equations. Bulletin of the Karaganda University – Mathematics ser. 1 (2021), 138–148.
- [33] H. Zhang, X. Han and X. Yang, Quintic B-spline collocation method for fourth order partial integro-differential equations with a weakly singular kernel. Appl. Math. Comput. 219 (2013), no. 12, 6565–6575.