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We study the long time behavior of nonlinear stochastic functional-differential equations in
Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild
solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the
appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure
based on the Krylov–Bogoliubov theorem on the tightness of the family of measures.

1 Introduction
In this work we study the asymptotic behaviour of solutions of stochastic functional-differential
equations. In a bounded domain, the equation reads as

du = [Au+ f(ut)] dt+ σ(ut) dW (t) in D, t > 0; (1.1)
u(t, x) = ϕ(t, x), t ∈ [−h, 0), u(0, x) = φ0(x) in D;

u(t, x) = 0, x ∈ ∂D, t ≥ 0.

The corresponding problem in the entire space has the form

du = [Au+ f(ut)] dt+ σ(ut) dW (t) in Rd, t > 0; (1.2)
u(t, x) = ϕ(t, x), t ∈ [−h, 0), u(0, x) = φ0(x) in Rd.

Here A is an elliptic operator

A = A(x) =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
+ c(x), (1.3)

the interval [−h, 0] is the interval of delay, and ut = u(t+ θ) with θ ∈ [−h, 0).
Functional differential equations of types (1.1) and (1.2) are mathematical models of processes,

the evolution of which depends on the previous states. The classical results for deterministic
functional-differential equations in finite dimensional spaces can be found in [6] and the references
therein. Stochastic functional differential equations in finite dimensions have been studied exten-
sively as well. In particular, the existence of invariant measures for stochastic ordinary differential
equations was established in [1] and [5].

The results on functional differential equations in infinite dimensions are significantly more
sparse.

The main goal of the present work is to establish the existence and uniqueness of invariant
measures for equations (1.1) and (1.2) based on the Krylov–Bogoliubov theorem on the tightness
of the family of measures [7]. More precisely, we will use the compactness approach of Da Parto
and Zabczyk [3], which involves the following key steps:
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(i) Establishing the existence of a Markovian solution of (1.1) or (1.2) in a certain functional
space, in which the corresponding transition semigroup is Feller;

(ii) Showing that the semigroup S(t) generated by A is compact;

(iii) Showing that the corresponding equation with a suitable initial condition has a solution,
which is bounded in probability.

This approach was used in establishing the existence of invariant measure for a large class of
stochastic nonlinear partial differential equations without delay, e.g. [4] and references therein.
For functional differential equations in finite dimensions, the approach above was used in [2]. In
this work, the author established the existence of an invariant measure in Rd × L2(−h, 0;Rd). In
contrast, for stochastic partial differential equations, the natural phase space for the mild solutions
of (1.2) is L2

ρ(Rd) × L2(−h, 0, L2
ρ(Rd)), where L2

ρ(Rd) is a weighted space. The equations of type
(1.1) and (1.2) were studied in the space C(−1, 0, L2

ρ(Rd)), which is a significantly easier problem.
In these spaces the authors studied the conditions for the existence and uniqueness of a solution, as
well as their Markov’s and Feller properties. However, in order to apply the compactness approach
one needs to work in L2

ρ(Rd)× L2(−h, 0, L2
ρ(Rd)), which is done in this work.

2 Formulation of the problem and the main result
Throughout the paper, the domain D is either a bounded domain with ∂D satisfying the Lyapunov
condition, or D = Rd. Denote

ρ(x) :=
1

1 + |x|r
,

where r > d if D = Rd and r = 0 (i.e. no weight) for bounded D. We introduce the following
spaces:

Bρ
0 := L2

ρ(D), Bρ
1 := L2(−h, 0, L2

ρ(D)), Bρ := Bρ
0 ×Bρ

1 , H := L2(D).

The coefficients aij of the operator A defined in (1.3) are Holder continuous with the exponent
β ∈ (0, 1), symmetric, bounded and satisfying the elipticity condition

d∑
i,j=1

ai,jηiηj ≥ C0|η|, η ∈ Rd

for some C0 > 0. The coefficients bi and c are also bounded and Holder continuous with some
positive Holder exponent.

If D is bounded, we impose homogeneous Dirichlet boundary conditions on ∂D. In this case,

D(A) = H2(D) ∩H1
0 (D).

If D = Rd, then D(A) = H2(Rd). Denote G(t, x, y) to be the fundamental solution (or the Green’s
function in the case of bounded D) for ∂

∂t − A. It is well known, that there are positive constants
C1(T ), C2(T ) > 0 such that

0 ≤ G(t, x, y) ≤ C1(T )t
−d/2e−C2(T )

|x−y|2
t (2.1)

for t ∈ [0, T ] and x, y ∈ D. Note that in (2.1), C1 and C2 depend not only on T , but on the
constants C0, d, T , maximum values of the coefficients of A, and the Holder constants. If the
operator is in the divergence form Au = div(a∇u), the estimates are of a different type, namely,

g1(t, x− y) ≤ G(t, x, y) ≤ g2(t, x− y),
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where
gi(t, x) = K(C0, d)t

−d/2e−K(C0,d)
|x|2
t , i = 1, 2, t ≥ 0, x, y ∈ Rd.

In this case, in contrast with (2.1), the constant K(C0, d) is independent of t.

Let
∞∑
i=1

ai <∞, and en be orthonormal basis in H, such that en ∈ L∞(D) and sup
n

∥en∥L∞(D) <

∞. Introduce the operator Q ∈ L(H) such that Q is non-negative, Tr(Q) < ∞, Qen = anen. Let
(Ω,F , P ) be a complete probability space. Introduce

W (t) :=

∞∑
i=1

√
aiβi(t)ei(x), t ≥ 0,

which is a Q-Wiener process on t ≥ 0 with values in L2(Q). Here βi(t) are standard, one dimen-
sional, independent Wiener processes. Also let {Ft, t ≥ 0} be a normal filtration satisfying

- W (t) is Ft-measurable;

- W (t+ h)−W (t) is independent of Ft ∀h ≥ 0, t ≥ 0.

Denote U = Q
1
2 (H). It is well known U ∈ L∞(D). Introduce the multiplication operator Φ : U →

Bρ
0 as follows: for fixed φ ∈ Bρ

0 , let Φ(ψ) := φψ, ψ ∈ U . Since φ ∈ Bρ
0 and φ ∈ L∞(D), the

operator is well defined and hence Φ◦Q1/2 : L2(D) → Bρ
0 defines a Hilbert–Schmidt operator. The

operator Φ is also a Hilbert–Schmidt operator satisfying

∥Φ ◦Q1/2∥2L2
=

∞∑
n=1

∥Φ ◦Q1/2en∥2Bρ
0
=

∞∑
n=1

an

∫
D

φ2(x)e2n(x)ρ(x) dx ≤ Tr(Q) sup
n

∥en∥2∞∥φ∥2ρ,

where Tr(Q) =
∑∞

n=1 an = a. Hence if Φ : Ω× [0, T ] → L(U,Bρ
0) is a predictable process satisfying

E
T∫
0

∥Φ ◦Q1/2∥2L2
ds <∞,

following [3] we can define
t∫

0

Ψ(s) dW (s) ∈ Bρ
0

with the following expansion

t∫
0

Ψ(s) dW (s) =

∞∑
i=1

√
ai

t∫
0

Φ(s, · )ei( · ) dβi(s).

Furthermore,

E
∥∥∥∥

t∫
0

Ψ(s) dW (s)

∥∥∥∥2
ρ

≤ a sup
n

∥en∥2∞

t∫
0

E∥Ψ(s, · )∥2Bρ
0
ds.
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Assumptions on nonlinearities
Assume f and σ satisfy the following conditions:

(i) The functionals f and σ map Bρ
1 to Bρ

0 ;

(ii) There exists a constant L > 0 such that

∥f(φ1)− f(φ2)∥Bρ
0
+ ∥σ(φ1)− σ(φ2)∥Bρ

0
≤ L∥φ1 − φ2∥Bρ

1

for any φ1, φ2 ∈ Bρ
1 .

Definition. An Ft measurable random process u(t, · ) ∈ Bρ
0 is a mild solution of (1.1) or (1.2) if

u(t, · ) = S(t)φ(0, · ) +
t∫

0

S(t− s)f(us) ds+

t∫
0

S(t− s)σ(us) dW (s), (2.2)

where
u(0, · ) = φ(0, · ) ∈ Bρ

0 , u(t, · ) = φ(t, · ) ∈ Bρ
1 , t ∈ [−h, 0].

Theorem 1 (Existence and uniqueness). Suppose f and σ satisfy conditions (i) and (ii), and
φ(t, · ) is an F0 measurable random process for t ∈ [−h, 0], which is independent of W and such
that

E∥φ(0, · )∥p
Bρ

0
<∞ and E∥φ( · , · )∥p

Bρ
1
<∞, p ≥ 2.

Then there exists a unique mild solution of (1.1) (or (1.2)) on [0, T ], and

E∥y(t)∥pBρ ≤ K(T )
(
1 + E∥y(0)∥pBρ

)
, t ∈ [0, T ].

Define ρ(x) = (1 + |x|r)−1. The main result of the paper is the following theorem.

Theorem 2. Let the assumptions of Theorem 1 hold. Assume equation (2.2) has a solution in Bρ

which is bounded in probability for t ≥ 0 with r > d+ r. Then there exists an invariant measure µ
on Bρ, i.e. ∫

Bρ

Ptφ(x) dµ(x) =

∫
Bρ

φ(x) dµ for any t ≥ 0 and φ ∈ Cb(B
ρ).
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