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The deterministic McKendrick-von Foerster model
∂u

∂t
+

∂u

∂a
= −m(t, a)u (t, a ≥ 0) (1)

is widely used to examine age-structured populations [2,4,6]. It is usually equipped with the initial
condition

u(0, a) = χ(a) ≥ 0

and the non-local boundary condition

u(t, 0) = b(t) =

∞∫
0

β(t, a)u(t, a) da ≥ 0.

Here u(t, a) is the size (density) of a certain population of a given age a ≥ 0 at time t ≥ 0,
m(t, a) ≥ 0 is the per capita mortality rate and b(t) is the birth function that depends on the
age-structured size of the population and the per capita birth rate β(t, a).

Eq. (1) is a balance equation that can be derived from the basic biophysical principles by letting
the increments in time and age be infinitely small and under the assumption that the population
is isolated. This explains why the McKendrik-von Foester equation is a source of many specific
population models. However, this equation does not take into account stochastic effects, like
demographic and environmental fluctuations, which are of importance in any realistic description
of population dynamics.

In this presentation, the following stochastic version of this model
∂u

∂t
+

∂u

∂a
= −(m(t, a) + ν̇(t))u (t, a ≥ 0) (2)

is considered. Here ν̇(t) is a stochastic noise which is represented by the formal (generalized)
derivative of a continuous scalar stochastic process ν(t) defined on the given filtered probability
space (

Ω,F , (Ft)t≥0,P
)
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with the probability measure P on the σ-algebra F of subsets of Ω and an increasing sequence
of σ-subalgebras Ft of F , where all the introduced σ-algebras are complete with respect to the
measure P.

The aim of the presentation is to deduce the equations for the total size of the juveniles J(t)
and the adults A(t)

J(t) =

τ∫
0

u(t, a) da and A(t) =

∞∫
τ

u(t, a) da, (3)

where τ ≥ 0 is the maturation time [6].
In the assumptions below, the following definition is used.

Definition. A real-valued (deterministic) function α(t, x, y), t ≥ 0, x, y ∈ (−∞,∞) belongs class
L if it is measurable (as a function of three variables) and satisfies the uniform Lipschitz condition
with respect to x and y:∣∣α(t, x1, y1)− α(t, x2, y2)

∣∣ ≤ L
(
|x1 − y1|+ |x2 − y2|

)
for all t ≥ 0, x, y ∈ (−∞,∞).

The restrictions on the coefficients in (2) can be summarized as follows:

(A1) The mortality rate m(t, a) is defined as

m(t, a) =

{
mJ(t) := µJ(t, J(t), A(t)), 0 ≤ a < τ,

mA(t) := µA(t, J(t), A(t)), a ≥ τ,
(4)

where µJ and µA are class L functions (that is, they are independent of the age a) and τ ≥ 0
is the maturation time.

(A2) The function χ(a) ≥ 0 (the initial age distribution at time t = 0) is càdlàg and satisfies the
condition

∞∫
0

sup
s≥a

χ(s) da < ∞.

In practical applications, the function χ has a compact support, so that this assumption will
be trivially satisfied.

(A3) At any time t, the birth rate function β is defined as

β(t, a) =

{
0, 0 ≤ a < τ,

βA(t) := βA(t, J(t), A(t)), a ≥ τ,

where βA is a class L function independent of the age a, and by definition, the birth rate of
the juvenile population (i.e. βJ) is equal to 0.

(A4) The stochastic process ν is defined as

ν(t) =

t∫
0

γ(s, J(s), A(s)) dB(s),

where B is the scalar Brownian motion and γ is a class L function.
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Below is the main result of the presentation.

Theorem 1. If assumptions (A1)–(A4) are fulfilled, then the aggregated age variables (3), together
with the auxiliary variable X(t), satisfy the system

dJ(t) = βA(t, J(t), A(t))A(t) dt− µJ(t, J(t), A(t))J(t) dt

−D
{
t, J( · ), A( · ), X( · )

}
βA

(
t− τ, J(t− τ), A(t− τ)

)
A(t− τ) dt

+ γ(t, A(t), J(t))J(t)dB(t) (t ≥ τ),

dA(t) = −µA(t, J(t), A(t))A(t) dt

+D
{
t, J( · ), A( · ), X(t)

}
βA

(
t, J(t− τ), A(t− τ)

)
A(t− τ) dt

+ γ(t, J(t), A(t))A(t)dB(t) (t ≥ τ), (5)
dX(t) = γ(t, J(t), A(t))X(t) dB(t),

where

D
{
t, J( · ), A( · ), X( · )

}
= exp

{
−

t∫
t−τ

µJ(s, J(s), A(s)) ds

}
X(t)X−1(t− τ)

is an integral operator standing for the distributed delay in the equation.
This system satisfies the initial conditions

J(t) = J0(t), A(t) = A0(t), X(t) = X0(t) (t ∈ [0, τ ]),

where J0( · ), A0( · ) and X0(t) are Fτ -measurable, continuous stochastic processes satisfying the
following system of stochastic integro-differential equations on the interval [0, τ ]:

dJ0(t) = −D
{
t, J0( · ), A0( · )

}
dt+ βA(t, J0(t), A0(t))A0(t) dt− µJ(t, J0(t), A0(t))J0(t) dt

+ γ(t, A0(t), J0(t))J0(t) dB(t),

dA0(t) = D
{
t, J0( · ), A0( · )

}
dt− µA(t, J0(t), A0(t))A0(t) dt

+ γ(t, J0(t), A0(t))A0(t) dB(t),

dX0(t) = γ(t, J0(t), A0(t))X0(t) dB(t),

and

D0

{
t, J0( · ), A0( · ), X0( · )

}
= χ(τ − t) exp

{
−

t∫
0

µJ(s, J0(s), A0(s)) ds

}
X0(t).

The initial conditions for the latter system are given by

J(0) =

τ∫
0

u(0, s) ds =

τ∫
0

χ(s) ds,

A(0) =

∞∫
τ

u(0, s) ds =

∞∫
τ

χ(s) ds,

X(0) = 1.

The proof of this result can be found in [5].
Consider some biologically important stochastic models which can be obtained from Theorem 1.
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Example 1: the stochastic counterpart of the recruitment-delayed model.
The following equation is widely used in population dynamics (see, e.g., the monograph [3] or the
review paper [1]):

A′(t) = B(A(t− τ))−D(A(t)),

where A(t) is the size of the adult population and B and D are the birth and death functions,
respectively.

Let us deduce a stochastic counterpart of this model starting from the McKendrik-von Foerster
equation (2). Assume that

m(t, a) =

{
µJ(t), 0 ≤ a < τ,

µA(A(t)), a ≥ τ,

and the birth rate is given by

β(t, a) =

{
0, 0 ≤ a < τ,

βA(A(t)), a ≥ τ,
(6)

where βA(A), A ∈ (−∞,∞), is a continuously differentiable function, which satisfies the assumption
β′
A(A) < 0 for A ≥ 0.

The coefficient γ in (A4) is a function of t, so that ν(t) =
t∫
0

γ(s) dB(s), and satisfies the condition

γ(t) ≥ m > 0. Then we get
dA(t) = −µA(A(t))A(t) dt+ α(t, τ)βA(A(t− τ))A(t− τ) dt+ γ(t)A(t) dB(t),

for t ≥ τ , where

α(t, τ) = exp

{
−

t∫
t−τ

µJ(s) ds+ ν(t)− ν(t− τ)− 1

2

t∫
t−τ

γ2(s) ds

}
. (7)

Example 2: the stochastic counterpart of Nicholson’s blowflies model.
The most celebrated model of the deterministic population dynamics is Nicholson’s blowflies model
and its generalizations (see, e.g., the review paper [1] and the references therein)

A′(t) = −mAA(t) + p0A(t− τ) exp
{
− θA(t)

}
.

Consider Eq. (5) for the adult population with the mortality rate m(t, a) and the birth rate
β(t, a) given by (4) and (6), respectively. Assume also that γ = γ(t) ≥ m > 0. Then we get the
following stochastic version of the generalized Nicholson’s blowflies delay equation:

dA(t) = −mAA(t) dt+ α(t, τ)βA(A(t− τ))A(t− τ) dt+ γA(t)A(t) dB(t), (8)
where α(t, τ) is given by (7). Notice that this equation differs from that studied in [7], where an
additive stochastic noise was appended to the deterministic blowflies model:

dA(t) = −mAA(t) dt+ p0A(t− τ) exp
{
− θA(t− τ)

}
dt+ δA(t) dB(t). (9)

The main difference between Eq. (9), obtained by automatically adding a stochastic noise,
and Eq. (8) obtained from the stochastic McKendrik-von Foester model (2) is the presence of the
stochastic process α(t, τ), which represents an intrinsic multiplicative stochastic noise. This ran-
dom coefficient depends explicitly on the noise γḂ, which we added to the mortality rate in (2),
and explains how random fluctuations in the population’s mortality influence fluctuations in the
birth function. This dependence is disregarded in Eq. (9). Note that as long as the noise γḂ is
non-zero, we will always get a nontrivial random α in front of the deterministic birth function βA.

In addition, starting with (2) will always produce a random initial condition A(t) = φA(t),
0 ≤ t ≤ τ , as it was shown in the previous section.
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