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The differential equation
d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0 (1)

depending on the real parameter µ has been introduced by the Dutch engineer and physicist
Balthasar van der Pol [4] in 1926 to describe self-oscillations in a triod circuit. If we replace t
by −t and µ by −µ, then equation (1) remains invariant. Thus, to study the phase portrait of
equation (1) we can restrict ourselves to the case µ ≥ 0. It is well-known (see, e.g., [3]) that (1)
has for µ > 0 a unique limit cycle Γ(µ) which is orbitally stable and hyperbolic. For small µ,
the periodic solutions x = p(t, µ) describing the limit cycle Γ(µ) behave like the solution of the
harmonic oscillator, for large µ, p(t, µ) represents a relaxation oscillation. In what follows we derive
differential systems which distinguish in their structure but whose phase portraits are topologically
equivalent to that of the van der Pol equation (1). The reason to do this consists in the intension
to find the most suitable form for studying the localization and the shape of the limit cycle for
arbitrary values of the parameter.

The main tool for our investigation is the method of Dulac–Cherkas functions which was intro-
duced by L. A. Cherkas in 1997 [1] as a generalization of Dulac method [2]. We recall the definition
of Dulac–Cherkas function for the planar autonomous differential system

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (2)

in some open region G ⊂ R2, where P,Q ∈ C1(G,R) and X is the vector field defined by (2).

Definition 1. A function Ψ ∈ C1(G,R) is called the Dulac–Cherkas function of system (2) in G if
there exists a real number κ ̸= 0 such that

Φ(x, y, κ) := (gradΨ, X) + κΨdivX > 0 (< 0) in G. (3)

In case κ = 1, Ψ is a Dulac function.

Remark 1. Condition (3) can be relaxed by assuming that Φ may vanish in G on a set of measure
zero, and that no oval of this set is a limit cycle of (2).

For the sequel we introduce the subset W of G defined by W := {(x, y) ∈ G : Ψ(x, y) = 0}.
The following theorem can be found in [1, 2].
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Theorem 1. Let Ψ be a Dulac–Cherkas function of (2) in G. Then any limit cycle Γ of (2) located
entirely in G has the following properties:

(i) Γ does not intersect W;

(ii) Γ is hyperbolic;

(iii) the stability of Γ is determined by the sign of the expression κΦΨ on Γ.

Property (ii) has the strong consequence that the existence of a Dulac–Cherkas function implies
that system (2) has no multiple limit cycle.

Theorem 2. Let Ψ be a Dulac–Cherkas function of (2) in G such that the set W contains some
oval W0 with the property that the open region G0 bounded by W0 belongs to G and that G0 ∩W is
empty. Then there is no limit cycle in G0.

Corollary 1. Under the assumptions of Theorem 2, W0 can be used as interior boundary of a
possible Poincaré–Bendixson annulus.

The following result is also known [2].

Theorem 3. Let G be a simply connected region where Ψ is a Dulac–Cherkas function of (2) such
that W consists of one oval in G. Then system (2) has at most one limit cycle in G.

Now we note that (1) can be rewritten as the system

dx

dt
= −y,

dy

dt
= x− µ(x2 − 1)y

(4)

of Liénard type. The goal of our investigation is to construct Dulac–Cherkas functions for systems
equivalent to the van der Pol system (4) such that the zero-set of these functions consists of
a unique oval which can be used by Corollary 1 as interior boundary of a Poincaré–Bendixson
annulus containing the unique limit cycle of the corresponding system. At the same time we
study the problem whether a Dulac–Cherkas function for an equivalent system can be obtained by
applying the equivalence relation to the known Dulac–Cherkas function. We start with the original
van der Pol system.

Lemma 1. The functions
Ψa(x, y) := x2 − 1 + y2 (5)

and
Ψb(x, y, µ) := x2 − 8

3
+ µ

(
x− x3

3

)
y + y2 (6)

are Dulac–Cherkas functions for system (4) in R2 for µ > 0.

The corresponding expressions (3) read

Φa(x,−2, µ) = 2µ(x2 − 1)2 ≥ 0,

Φb(x,−1, µ) =
2

3
µ(x2 − 2)2 ≥ 0

for κ = −2 and κ = −1, accordingly.
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Remark 2. The zero-sets Wa and Wb(µ) of the functions Ψa(x, y) and Ψb(x, y, µ) consist of a
unique oval for µ > 0. Thus, these ovals can be used as interior boundaries for a Poincaré-
Bendixson annulus. We note that the parameter dependent oval Wb(µ) represent for small µ a
better approximation of the van der Pol limit cycle Γ(µ).

For the first time the function Ψa(x, y) was constructed by L. A. Cherkas in the paper [1]. Next
we consider the system

dx

dt
= −y,

dy

dt
= x+ (µ− x2)y,

(7)

which we obtain from system (4) by the scaling x =
√
µx, y =

√
µ y. The representations (4) and

(7) are especially useful for small µ: if µ crosses the value 0, the unique limit cycle Γ(µ) in system
(4) bifurcates from the family of circles with center at the origin, while in system (7) the limit
cycle Γ(µ) bifurcates from the origin (Hopf bifurcation). We note that in the case µ = 0 the phase
portraits of these systems are not topologically equivalent.

Lemma 2. The functions
Ψa(x, y, µ) := x2 + y2 − µ (8)

and
Ψb(x, y, µ) := x2 + y2 − 8

3
µ+

(
µx− x3

3

)
y (9)

are Dulac–Cherkas functions for system (7) in R2 for µ > 0.

Both ovals corresponding to the functions (8) and (9) can be used as interior boundaries for a
Poincaré-Bendixson annulus. Now we study the singularly perturbed system

dx

dτ
= −y,

ε
dy

dτ
= x− (x2 − 1)y,

(10)

which we get from system (4) by the scaling t = µτ and using the notation ε = 1/µ2. In the
case µ = 1 both system coincide such that the functions Ψa and Ψb defined in (5) and (6) are also
Dulac–Cherkas functions of system (7). For µ ̸= 1, this scaling changes not only the velocity running
along the trajectories but also the vector field such that Ψa and Ψb are not longer Dulac–Cherkas
functions of system (7).

Lemma 3. The functions
Ψa(x, y, ε) := x2 − 1 + εy2

and
Ψb(x, y, ε) := x2 − 8

3
+
(
x− x3

3

)
y + εy2

are Dulac–Cherkas functions for system (10) in R2 for ε > 0.

In the similar way we derive the following results for three other van der Pol equivalent systems.

Lemma 4. The function

Ψ(ξ, η, µ) := ξ2 − 8

3
+ µ

(
η − η3

3

)
ξ + η2
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is a Dulac–Cherkas function for system

dξ

dt
= −η,

dη

dt
= µ

(
η +

η3

3

)
+ ξ

in R2 for µ > 0.

Lemma 5. The function

Ψ(ξ, η, µ) := ξ
2 − 8

3
µ+

(
µη − η3

3

)
ξ

is a Dulac–Cherkas function for system

dξ

dt
= −η,

dη

dt
= ξ + µη − η3

3

in R2 for µ > 0.

Lemma 6. The function

Ψ(ξ, η, ε) := ξ2 + εη2 − 8

3
ε+

(
η − η3

3

)
ξ

is a Dulac–Cherkas function for system

dξ

dτ
= −η,

ε
dη

dτ
= ξ + η − η3

3

in R2 for ε > 0.

Finally for the van der Pol system we present an approach for the construction of an outer
boundary for the Poincaré-Bendixson annulus which does not require an approximation of any
orbit.

Theorem 4. The algebraic ovales
x2 + y2 = 1

and

y2 + µyx
(
2− x2

3

)
+ (1 + µ2)x2 − 7µ2

12
x4 +

µ2

18
x6 − C(µ) = 0

form a global algebraic Poincaré-Bendixson annulus for system (4).

In the proof of this theorem we describe a way how the function C(µ) depending on the pa-
rameter µ can be selected. Our approach implies the uniqueness of a limit cycle in the constructed
Poincaré-Bendixson annulus.
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