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1 Introduction and setting of the problem
It is known that the local characteristics of processes in micro-inhomogeneous medium contain
functions of the form a(xε ), where ε > 0 is a small parameter. Passing to averaged parameters is
an effective tool for studying such processes [10]. Such a procedure for parabolic operators was
justified in [7]. Optimal control problems for parabolic equations with fast oscillating functions in
the coefficients were investigated in [1,6,12,14]. General questions of the solvability of systems of the
reaction-diffusion type were investigated in [4,9,13]. In this paper, we consider the optimal control
problem on semi-axis for the reaction - diffusion equation with a coercive objective functional,
whose coefficients contain fast oscillating functions.

More precisely, let Ω ⊂ Rn be a bounded domain, ε ∈ (0, 1) be a small parameter. In the
cylinder Q = (0,∞)× Ω, the controlled process is described by the evolutionary system
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(1.1)

u ∈ U ⊆ L2(Q), (1.2)

J(y, u) =

∫
Q

qε(t, x, y(t, x))y(t, x) dt dx+ γ

∫
Q

u2(t, x) dt dx −→ inf, γ > 0. (1.3)

Under natural assumptions on parameters we prove the following limit equality

J(y ε, u ε) −→ J(y, u), ε → 0,

where {y ε, u ε} and {y, u} are optimal processes of the perturbed problem (1.1)–(1.3) and the
corresponding averaged problem.

2 Main results
We will consider the optimal control problem (1.1)–(1.3) under following assumptions:

a is a measurable, periodic, symmetric matrix satisfying the condition of uniform ellipticity and
boundedness

∀x ∈ Rn, ∀ η ∈ Rn ν1

n∑
i=1

η2i ≤
n∑

i,j=1

aij(x)ηiηj ≤ ν2

n∑
i=1

η2i , (2.1)
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b ∈ L∞(Rn) is non-negative, bounded, periodic function,

∃ b1 > 0, ∃ b0 > 0, ∀ s ∈ R b0 ≤ b(s) ≤ b1, (2.2)

nonlinearity f ∈ C(R) satisfies the standard conditions of sign and growth:

∃α > 0, C ≥ 0, p ≥ 2 : ∀ s ∈ R, f(s) · s ≥ α|s|p, |f(s)| ≤ C
(
1 + |s|p−1

)
, (2.3)

U is convex, closed set in L2(Q), 0 ∈ U.

The function qε : Q × R 7−→ R is a Carathéodory function, and there exist a constant K > 0
independent of ε ∈ (0, 1) and non-negative functions K1 ∈ L1(Q), K2 ∈ L2(Q) such that

qε(t, x, ξ)ξ ≥ −K1(t, x), |qε(t, x, ξ)| ≤ K|ξ|+K2(t, x). (2.4)

Under conditions (2.1)–(2.3), it is known [13] that for any ε > 0, ∀u ∈ L2(Q), ∀ yε0 ∈ L2(Ω),
problem (1.1) has at least one solution y = y(t, x) in the class

W :=
{
y ∈ L2(0,∞;H1

0 (Ω)) :
dy

dt
∈ L2(0,∞;H−1(Ω))

}
.

Moreover, each solution (1.1) from W belongs to C([0,∞);L2(Ω)).

Theorem 2.1. Under conditions (2.1)–(2.4) the optimal control problem (1.1)–(1.3) has a solution
{y ε, u ε}.

Now let us discuss averaged problem (ε = 0).
We assume that a constant, positive defined matrix â is averaged for a(xε ) [10], the number b̂ is

the mean value of a periodic function b(x), and there exists a Carathéodory function qε : Q×R 7−→ R
such that

∀ r > 0 qε(t, x, ξ) → q(t, x, ξ) weakly in L2(Q) uniformly with respect to |ξ| ≤ r. (2.5)

Consider problem (1.1)–(1.3) with averaged coefficients
∂y

∂t
= div[â∇y]− b̂f(y) + u(t, x),

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= y0(x),

(2.6)

u ∈ U ⊆ L2(QT ), (2.7)

J(y, u) =

∫
Q

q(t, x, (t, x))y(t, x) dx+ γ

∫
Q

u2(t, x) dt dx −→ inf . (2.8)

Using convergence (2.5), it is easy to show that the function qε : Q×R 7→ R satisfies inequalities
(2.4). Then, by Theorem 2.1, we can assert that problem (2.6)–(2.8) has a solution {y, u}.

We will assume the following additional condition:

for any u ∈ U problem (2.6) has a unique solution. (2.9)

Condition (2.9) will take place if f ∈ C1(R) and f ′(s) ≥ −C3 [13], or b̂ · f(s) ≡ 0.
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Theorem 2.2. Let conditions (2.1)–(2.4), (2.5), (2.9) be satisfied, and in (2.3) we have

p =


2, if n ≥ 3,

3, if n = 2,

4, if n = 1.

(2.10)

Let also for some number l > 0 the following condition be fulfilled∣∣qε(t, x, ξ1)− qε(t, x, ξ2)
∣∣ ≤ l|ξ1 − ξ2|. (2.11)

Then the limit relation is true

J(y ε, u ε) −→ J(y, u), ε → 0,

where {y ε, u ε} and {y, u} are optimal processes in problems (1.1)–(1.3) and (2.6)–(2.8).
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