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Let us consider the Robin eigenvalue problem
Au+Iu=0, e, (1)
(50 + )
5, T U

Here Q C R", n > 2, is a bounded domain with the sufficiently smooth boundary I". We denote by
A(a) the first eigenvalue of problem (1), (2). Consider also the Dirichlet eigenvalue problem

=0, aeR. (2)
zel

Au+du=0, €, (3)

u|mer =0. (4)

Let AP be the first eigenvalue of problem (3), (4), and u’(z) be the first Dirichlet eigenfunction,
satisfying HU1D||L2(Q) =1.
In the papers [1-5] we get the following statement.

Theorem 1. The eigenvalue )\f'(a) satisfies the asymptotic representation

M) = AP — a0t —apa 2 4+ 0(a7?), a — 4o, (5)
ouP\2 oud ov
a1 = / (W) dS, a9 = / Wa ds. (6)
r T

The function v € HY(Q) is a solution of the boundary value problem

D2
Av—l—)\?v:/(aaulj> dsuP, ze€Q, (7)
r
ouP
Vher ==, (8)

satisfying the condition

(/mfdx:& (9)

Q

Problem (7)—(9) has a unique solution.

In this paper we establish two-sided estimates for the coefficient a; in formula (5).
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Theorem 2. Let Q C Bg,(0) = {x € R": |z| < Ry} and b(x) = (b1(x),...,bn(x)) € CL(Q) be a
vector function. Then the following estimates hold:

27
< <4 inf 1)x;j A Q) — . 1
o ax n belc{ll(ﬁ)i,jgllz?.{-,n [1(64)a ||C’(Q)>\1 ) Hf(x)HC(Q) igg‘f(i’?)’ (10)

blr=v
Definition. We call I a strictly star-shaped surface if the inequality (v, 2) > 0 holds for all z € T.
Theorem 3. Let I' be a strictly star-shaped surface. Then the following estimate holds:

2\P
<=1 1
= inf (v, x) (11)
zell

Let us note that for 2 = Bg,(0) it follows from (10), (11) that a; = % .

Proof. By direct computation we have the following equality for solutions of problem (3), (4):

n

/(b, V2 ds = / (2 Z (bi) e, Uy Uge; + divb(/\u2 - |Vu|2)) dzx. (12)

i o dd=l

Using (12) for b|r = v, we get

/u ds—/(b v)u2 d3<2/ Z i) Uy U da:+/|d1vb\ (|Vul® + M?) da. (13)

T T 3,j=1
We have
n
D i)y tate; < x| (Bi)a lloy D Jte] sy

ij=1 " ij=1

= max [z, (Z]um) <n,max ([0l VP, zeQ. (14)

Now, combine (13), (14) and the inequality

| divb| < n_max 100)z; o), = €9,

we get

/u ds < max H(bi)xjuc(ﬁ) <3n/|Vu|2dg:+)\/u2dx>. (15)
r Q

1,7=1,..
Q

/Vu|2dx:)\/u2 dx. (16)
Q Q

It follows from (3), (4) that

Therefore, by (15) and (16),

/u ds <4n max ](bi)xj\C(Q)A/UQ dzx. (17)
r

1,7=1,..
Q
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Taking u = u?’ with ”UlDHLZ(Q) =1, we get from (6) and (17) the upper estimate (10).
Let us prove now the lower estimate (10). We have the Rellich equality for normalized in L (12)
eigenfunctions of problem (3), (4) (see [6,7]):

A= ;/(m,y)uz ds. (18)

r

Therefore,

2\ = /(w,u)uz ds < [ |zju?ds < Sup/ug ds < Ro/uz ds.
r r Ty r

Now, for u = uP’ we obtain

alz—l. L]
0

The proof of Theorem 3 is based on the Rellich equality (18) for u{j in a strictly star-shaped
domain §2.
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