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1 Introduction
We present a complete overview on the qualitative behavior of solutions of the half-linear equation

(a(t)|x′|α sgnx′)′ − b(t)|x|α sgnx = 0, (1.1)

where α is a positive constant and the functions a, b are continuous and positive for t ≥ t0 ≥ 0.
Equation (1.1) comes out in studying radial solutions of equations with p-Laplacian operator

and have been widely investigated in the literature.
The study on the qualitative behavior of solutions of (1.1), especially as concerns the classi-

fication of solutions, the existence of monotone bounded or unbounded solutions, the growth at
infinity or the decay at zero of solutions, has a long history. Many of the results obtained in these
fields have been obtained for more general equations and it would be impossible to mention all of
them. As regards in particular the half-linear case, we recall the pioneering works of Elbert and
Mirzov [13, 25] and we refer the reader for more details to the monographs [12, 26] and references
therein.

Interesting contributions are due to the Georgian and Russian mathematical school. Almost
all of these papers concern very general differential equations, which include, in particular, the
Emden–Fowler equation or the Thomas-Fermi equation, see [4, 6, 7, 16, 18, 22, 28]. Recently, other
developments are given by the Japanese mathematical school, see [14,15,19,20,27,30] under different
point of view.

Our aim here is to present a complete overview, quadro completo, to the asymptotic behavior
of solutions of (1.1). This result is a generalization of the one corresponding for the linear equation
with Sturm–Liouville differential operator, see, e.g. [5]. In particular, we show that when the
functions a, b have, roughly speaking, a power behavior near infinity, then the complete overview is
the same as for the linear equation. Our approach follows that one in [1–3], even if here the results
are more complete and the method is slightly different.

2 Basic properties
Following the linear case, we introduce a classification of solutions of (1.1), which is based on the
one in [1–3], with minor modifications. We note that a slightly different classification of solutions of
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an equation, which includes (1.1), has been used in [27] under the additional assumption a−1/α ̸∈
L1[t0,∞) and in [30] in the opposite situation a−1/α ∈ L1[t0,∞). Passing from the linear case
to the half-linear one, it is well-known that several basic differences arise, see, e.g., [12, Section
1.3]. In particular, the set of solutions of (1.1), α ̸= 1, is not a linear space, the Jacobi–Liouville
identity for the Wronskian and the variation of constant principle fail to hold for (1.1) with α ̸= 1.
Independently of this fact, there are also a lot of similarities in asymptotic behavior of solutions.

Recall that any nontrivial solution x of (1.1) is defined on the whole interval [t0,∞) and satisfies
sup

t∈[τ,∞)
|x(t)| > 0 for any τ ≥ t0. Moreover, the Cauchy problem for (1.1) is uniquely solvable for

any couple of initial data. In other words, given T ≥ t0 and x0, x1 ∈ R, there exists a unique
solution x of (1.1) satisfying x(T ) = x0, x′(T ) = x1 and x is defined on the whole interval [t0,∞).
Consequently, x ≡ 0 if and only if x0 = x1 = 0. Further, equation (1.1) is disconjugate on [t0,∞),
that is any nontrivial solution of (1.1) has at most one zero on [t0,∞). Hence, (1.1) is nonoscillatory.
The following holds.

Theorem 2.1. The set of nontrivial solutions of (1.1) may be divided into two classes

M+ =
{
x solution of (1.1) : ∃ tx ≥ t0 : x(t)x′(t) > 0 for t > tx

}
,

M− =
{
x solution of (1.1) : x(t)x′(t) < 0 for t > t0

}
,

and both classes are nonempty. In particular, solutions x of (1.1), satisfying either x(T ) = 0,
x′(T ) > 0 or x(T ) > 0, x′(T ) = 0 at some T ≥ t0, are positive increasing on (T,∞) and belong to
the class M+. Further, if a solution of (1.1) in the class M+ is bounded, then every solution in the
class M+ is bounded, too.

The proof of Theorem 2.1 follows an idea used by Mambriani to solve the well-known Thomas-
Fermi problem, see [29, Chapter XII, Section 5.]. An alternative proof can be found in [7].

The asymptotic behavior of solutions of (1.1) depends on the four integrals

J1 =

∞∫
t0

a−1/α(t)

( t∫
t0

b(r) dr

)1/α

dt, J2 =

∞∫
t0

a−1/α(t)

( ∞∫
t

b(r) dr

)1/α

dt,

Y1 =

∞∫
t0

b(t)

( ∞∫
t

a−1/α(r) dr

)α

dt, Y2 =

∞∫
t0

b(t)

( t∫
t0

a−1/α(r) dr

)α

dt.

A complete classification of solutions (1.1) require a preliminary analysis of mutual behavior of
these integrals. Using some integral inequalities, we get the following.

Lemma 2.1 ( [11]). If α ≥ 1, then

Y2 = ∞ =⇒ J2 = ∞, Y1 = ∞ =⇒ J1 = ∞.

If 0 < α ≤ 1, then
J2 = ∞ =⇒ Y2 = ∞, J1 = ∞ =⇒ Y1 = ∞.

Lemma 2.1 can be viewed as an extension of the Fubini theorem. Indeed, when α = 1, we have

J1 = Y1, J2 = Y2. (2.1)

By virtue of Lemma 2.1, the possible cases concerning the convergence of integrals Ji, Yi, i = 1, 2,
are the following eight:
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(C1): J1 = ∞, J2 = ∞, Y1 = ∞, Y2 = ∞, α > 0;

(C2): J1 = ∞, J2 < ∞, Y1 = ∞, Y2 < ∞, α > 0;

(C3): J1 < ∞, J2 = ∞, Y1 < ∞, Y2 = ∞, α > 0;

(C4): J1 < ∞, J2 < ∞, Y1 < ∞, Y2 < ∞, α > 0.

(C5): J1 = ∞, J2 = ∞, Y1 = ∞, Y2 < ∞, α > 1;

(C6): J1 = ∞, J2 = ∞, Y1 < ∞, Y2 = ∞, α > 1;

(C7): J1 = ∞, J2 < ∞, Y1 = ∞, Y2 = ∞, 0 < α < 1;

(C8): J1 < ∞, J2 = ∞, Y1 = ∞, Y2 = ∞, 0 < α < 1.

All cases (Cn), n = 1, . . . , 8, may occur, as examples below. Cases (C1)–(C4), may occur for
any α > 0. Cases (C5) and (C6) may occur only when α > 1, and cases (C7), (C8) only when
0 < α < 1. Thus, cases (C5)–(C8), do not occur in the linear case and so, roughly speaking, they
are typical for the half-linear case. When α = 1, that is for the linear equation, the possible cases
are only the four cases (C1)–(C4). Moreover, in view of (2.1), for the linear equation the integrals
Y1 and Y2 do not play any role.

3 A complete overview
A precise and complete classification of solutions x of (1.1) may be done by considering also the
asymptotic behavior of the quasiderivative x[1], that is the function x[1](t) = a(t)|x′(t)|α sgnx′(t).

Any solution of (1.1) in the class M+ belongs to one of the following four subclasses:

M+
∞,∞ =

{
x ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|x[1](t)| = ∞

}
,

M+
∞,ℓ =

{
x ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|x[1](t)| < ∞

}
,

M+
ℓ,∞ =

{
x ∈ M+ : lim

t→∞
|x(t)| < ∞, lim

t→∞
|x[1](t)| = ∞

}
,

M+
ℓ,ℓ =

{
x ∈ M+ : lim

t→∞
|x(t)| < ∞, lim

t→∞
|x[1](t)| < ∞

}
.

Similarly, any solution of (1.1) in the class M− belongs to one of the following four subclasses:

M−
ℓ,ℓ =

{
x ∈ M− : lim

t→∞
x(t) ̸= 0, lim

t→∞
x[1](t) ̸= 0

}
,

M−
ℓ,0 =

{
x ∈ M− : lim

t→∞
x(t) ̸= 0, lim

t→∞
x[1](t) = 0

}
,

M−
0,ℓ =

{
x ∈ M− : lim

t→∞
x(t) = 0, lim

t→∞
x[1](t) ̸= 0

}
,

M−
0,0 =

{
x ∈ M− : lim

t→∞
x(t) = 0, lim

t→∞
x[1](t) = 0

}
.

Unbounded solutions x of (1.1) are also called either strongly increasing (as t → ∞) or regular
increasing (as t → ∞), according to x ∈ M+

∞,∞ or x ∈ M+
∞,ℓ, respectively. Such a terminology

originates from the Georgian mathematical school, see [18, 22]. Indeed, when a(t) ≡ 1, for any
unbounded eventually positive solutions x, we have either

lim
t→∞

x(t)

t
= ∞ or lim

t→∞

x(t)

t
= ℓx, 0 < ℓx < ∞,
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according to x is strongly increasing or regular increasing, respectively. Analogously, solutions x of
(1.1) such that limt→∞ x(t) = 0 are called either strongly decaying or regular decaying (as t → ∞),
according to x ∈ M−

0,0, or x ∈ M−
0,ℓ, respectively. Sometimes, solutions in the subclasses M+

∞,∞ and
M−

0,0 are called extremal solutions.
The following result gives a complete overview of the asymptotic behavior of solutions of (1.1).

Theorem 3.1. For the half-linear equation (1.1) we have M+ ̸= ∅, M− ̸= ∅. Further,

(1) If (C1) holds, then M+ = M+
∞,∞ ̸= ∅ and M− = M−

0,0 ̸= ∅.

(2) If (C2) holds, then M+ = M+
∞,ℓ ̸= ∅ and M− = M−

ℓ,0 ̸= ∅.

(3) If (C3) holds, then M+ = M+
ℓ,∞ ̸= ∅ and M− = M−

0,ℓ ̸= ∅.

(4) If (C4) holds, then M+ = M+
ℓ,ℓ ̸= ∅, M−

ℓ,ℓ ̸= ∅, M−
ℓ,0 ̸= ∅, M−

0,ℓ ̸= ∅ and M−
0,0 = ∅.

(5) If (C5) holds, then M+ = M+
∞,ℓ ̸= ∅ and M− = M−

0,0 ̸= ∅.

(6) If (C6) holds, then M+ = M+
∞,∞ ̸= ∅ and M− = M−

0,ℓ ̸= ∅.

(7) If (C7) holds, then M+ = M+
∞,∞ ̸= ∅ and M− = M−

ℓ,0 ̸= ∅.

(8) If (C8) holds, then M+ = M+
ℓ,∞ ̸= ∅ and M− = M−

0,0 ̸= ∅.

A complete proof of Theorem 3.1 can be found in a forthcoming monograph [8, Chapter V]. It is
based on several tools. In particular, we use the Tychonoff fixed point theorem, certain functional
integral inequalities jointly with a comparison between (1.1) and the equation( 1

b1/α(t)
|z′|1/α sgn z′

)′
− 1

a1/α(t)
|z|1/α sgn z = 0, (3.1)

which comes from (1.1) replacing a by b−1/α , b by a−1/α and α with α−1. Equation (3.1) is called
reciprocal equation to (1.1) and its role in studying the qualitative behavior of solutions of (1.1)
is described by the Reciprocity Principle, see, e.g., [2, 12]. In particular, observe that the integrals
J1 and J2 read for (3.1) as Y2 and Y1, respectively. Further, also some interesting properties of
solutions of (1.1) are also used in the proof, like the property that two solutions of (1.1) can cross at
most at one point T ≥ t0, whereby the case T = ∞ is included, when these solutions are bounded.

Theorem 3.1 extends [3, Theorem 1] by giving the complete classification of solutions. Alterna-
tive proofs of some claims of Theorem 3.1 can be found in [3, Theorem 1], too.

4 Examples
Example 4.1. Consider the half-linear equation (1.1) and let there exist µ, ν ∈ R such that

lim
t→∞

a(t)

tµ
= a∞, lim

t→∞

b(t)

tν
= b∞, a∞, b∞ ∈ (0,∞). (4.1)

Using a standard calculation and Lemma 2.1 we have

J1 = ∞ ⇐⇒ Y1 = ∞ and J2 = ∞ ⇐⇒ Y2 = ∞.

Consequently, when (4.1) holds, the possible cases concerning the convergence of integrals Ji, Yi,
i = 1, 2, are the four cases (C1)–(C4). In other words, in this case the integrals Y1, Y2 do not play
any role. Hence, the situation is exactly the one which happens in the linear case.
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Example 4.2. Consider the half-linear equation for t ≥ t0 > 0,(
e−3t(x′)3

)′ − t−2e−3tx3 = 0. (4.2)

For equation (4.2) we have

Y1 = lim
T→∞

T∫
t0

t−2e−3t

( T∫
t

er dr

)3

dt = ∞.

Hence, by virtue of Lemma 2.1 we get J1 = ∞. Moreover, we have

J2 =

∞∫
t0

et
( ∞∫

t

r−2e−3r dr

)1/3

dt ≥
∞∫

t0

( ∞∫
t

r−2 dr

)1/3

dt = ∞, (4.3)

and

Y2 =

∞∫
t0

t−2e−3t

( t∫
t0

er dr

)3

dt ≤
∞∫

t0

t−2 dt < ∞. (4.4)

Thus, for equation (4.2) the case (C5) holds and so, in view of Theorem 3.1, we obtain M+ =
M+

∞,ℓ ̸= ∅ and M− = M−
0,0 ̸= ∅.

Example 4.3. Consider the half-linear equation for t ≥ t0 > 0,(
t2/3et|x′|1/3 sgnx′

)′ − et|x|1/3 sgnx = 0. (4.5)

For equation (4.5) we have J2 = ∞. Hence, by virtue of Lemma 2.1 we get Y2 = ∞. Using (4.3)
and (4.4) we get J1 < ∞ and Y1 = ∞. Then, for equation (4.5) the case (C8) holds and so, in view
of Theorem 3.1 we obtain M+ = M+

ℓ,∞ ̸= ∅ and M− = M−
0,0 ̸= ∅. Observe that equation (4.5) is

the reciprocal equation to (4.2). Hence, the classification of its solutions can be obtained also using
the results in Example 4.2 and the Reciprocity principle.

Example 4.4. Consider the half-linear equations for t ≥ t0 > 1,(
|x′|1/2 sgnx′

)′ − t−3/2(log t)−2/3|x|1/2 sgnx = 0 (4.6)

and (
t3(log t)4/3(x′)2 sgnx′

)′ − x2 sgnx = 0. (4.7)

A standard calculation gives for equation (4.6) that J2 < ∞, Y2 = ∞ and Y1 = ∞. Thus,
Lemma 2.1 yields J1 = ∞ and the case (C7) holds. Applying Theorem 3.1 we obtain for equation
(4.6) M+ = M+

∞,∞ ̸= ∅ and M− = M−
ℓ,0 ̸= ∅.

Now, consider equation (4.7). Since this equation is the reciprocal equation to (4.6), for equation
(4.7) we have J1 = J2 = Y2 = ∞ and Y1 < ∞. Thus, for equation (4.7) the case (C6) holds and by
Theorem 3.1 we get M+ = M+

∞,∞ ̸= ∅ and M− = M−
0,ℓ ̸= ∅.

Some applications of Theorem 3.1 to the nonlinear differential equation(
a(t)|x′|α sgnx′

)′ − b̃(t)F (x) = 0,

where the weight b̃ has indefinite sign and F is a continuous function on R such that uF (u) > 0
for u ̸= 0, can be found in [9, 10].
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