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Let a finite interval [a, b] ⊂ R and parameters {m,n, r, l} ⊂ N, 1 ≤ p ≤ ∞, be given. By
Wn+r

p = Wn+r
p ([a, b];C) := {y ∈ Cn+r−1[a, b] : y(n+r−1) ∈ AC[a, b], y(n+r) ∈ Lp[a, b]} we denote a

complex Sobolev space and set W 0
p := Lp. This space is a Banach one with respect to the norm

∥y∥n+r,p =
n+r−1∑
k=0

∥y(k)∥p + ∥y(n+r)∥p,

where ∥ · ∥p is the norm in space Lp([a, b];C). Similarly, by (Wn+r
p )m := Wn+r

p ([a, b];Cm)
and (Wn+r

p )m×m := Wn+r
p ([a, b];Cm×m) we denote Sobolev spaces of vector-valued functions and

matrix-valued functions, respectively, whose elements belong to the function space Wn+r
p .

We consider the following linear boundary-value problem

(Ly)(t) := y(r)(t) +
r∑

j=1

Ar−j(t)y
(r−j)(t) = f(t), t ∈ (a, b), (1)

By = c, (2)

where the matrix-valued functions Ar−j( · ) ∈ (Wn
p )

m×m, the vector-valued function f( · ) ∈ (Wn
p )

m,
the vector c ∈ Cl, the linear continuous operator

B : (Wn+r
p )m → Cl (3)

are arbitrarily chosen; and the vector-valued function y( · ) ∈ (Wn+r
p )m is unknown.

We represent vectors and vector-valued functions in the form of columns. A solution to the
boundary-value problem (1), (2) is understood as a vector-valued function y( · ) ∈ (Wn+r

p )m satis-
fying equation (1) almost everywhere on (a, b) (everywhere for n ≥ 2) and equality (2) specifying l
scalar boundary conditions. The solutions of equation (1) fill the space (Wn+r

p )m if its right-hand
side f( · ) runs through the space (Wn

p )
m. Hence, the boundary condition (2) with continuous

operator (3) is the most general condition for this equation.
It includes all known types of classical boundary conditions, namely, the Cauchy problem, two-

and multi-point problems, integral and mixed problems, and numerous nonclassical problems. The
last class of problems may contain derivatives (generally fractional) y(k)( · ) with 0 < k ≤ n+ r.

For 1 ≤ p < ∞, every operator B in (3) admits a unique analytic representation

By =
n+r−1∑
k=0

αky
(k)(a) +

b∫
a

Φ(t)y(n+r)(t) dt, y( · ) ∈ (Wn+r
p )m,

where the matrices αk ∈ Crm×m and the matrix-valued function Φ( · ) ∈ Lp′ ([a, b];C
rm×m), 1/p +

1/p′ = 1.
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For p = ∞ this formula also defines an operator B : (Wn+r
∞ )m → Crm. However, there exist

other operators from this class generated by the integrals over finitely additive measures.
With the generic inhomogeneous boundary-value problem (1), (2), we associate a linear contin-

uous operator in pair of Banach spaces

(L,B) : (Wn+r
p )m → (Wn

p )
m × Cl. (4)

Recall that a linear continuous operator T : X → Y , where X and Y are Banach spaces, is called
a Fredholm operator if its kernel kerT and cokernel Y/T (X) are finite-dimensional. If operator T
is Fredholm, then its range T (X) is closed in Y and the index

indT := dimkerT − dim(Y/T (X)) ∈ Z

is finite.

Theorem 1. The linear operator (4) is a bounded Fredholm operator with index mr − l.

Theorem 1 allows the next specification.
For each number k ∈ {1, . . . , r}, we consider the family of the matrix Cauchy problems:

Y
(r)
k (t) +

r∑
j=1

Ar−j(t)Y
(r−j)
k (t) = Om, t ∈ (a, b),

with the initial conditions
Y

(j−1)
k (a) = δk,jIm, j ∈ {1, . . . , r}.

Here, Yk( · ) is an unknown m×m matrix-valued function, and δk,j is the Kronecker symbol.
By [BYk] we denote the numerical m× l matrix, in which j-th column is the result of action of

the operator B on the j-th column of the matrix-valued function Yk( · ).

Definition 1. A block rectangular numerical matrix M(L,B) := ([BY0], . . . , [BYr−1]) ∈ Cmr×l is
characteristic to the inhomogeneous boundary-value problem (1), (2). It consists of r rectangular
block columns [BYk( · )] ∈ Cm×l.

Here mr is the number of scalar differential equations of system (1), and l is the number of
scalar boundary conditions.

Theorem 2. The dimensions of the kernel and cokernel of operator (4) are equal to the dimensions
of the kernel and cokernel of the characteristic matrix M(L,B), respectively.

Theorem 2 implies a criterion for the invertibility of the operator (4).

Corollary 1. The operator (L,B) is invertible if and only if l = mr and the matrix M(L,B) is
nondegenerate.

With problem (1), (2), we consider the sequence of boundary-value problems

L(k)y(t, k) := y(r)(t, k) +
r∑

j=1

Ar−j(t, k)y
(r−j)(t, k) = f(t, k), t ∈ (a, b), (5)

B(k)y( · , k) = c(k), k ∈ N, (6)

where the matrix-valued functions Ar−j( · , k), the vector-valued function f( · , k), the vector c(k),
and a linear continuous operator B(k) satisfy the above conditions to problem (1), (2).
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With the boundary-value problem (5), (6), we associate a sequence of linear continuous operators

(L(k), B(k)) : (Wn+r
p )m → (Wn

p )
m × Cl

and a sequence of characteristic matrices depending on the parameter k ∈ N

M(L(k), B(k)) :=
([

B(k)Y0( · , (k))
]
, . . . ,

[
B(k)Yr−1( · , (k))

])
⊂ Cmr×l.

We now formulate a sufficient condition for the convergence of the characteristic matrices
M(L(k), B(k)) to the matrix M(L,B).

Theorem 3. If the sequence of operators (L(k), B(k)) converges strongly to the operator (L,B)
for k → ∞, then the sequence of characteristic matrices M(L(k), B(k)) converges to the matrix
M(L,B).

Theorem 3 implies the next result.

Corollary 2. Under the assumptions from Theorem 3, the following inequalities hold for sufficiently
large k:

dimker(L(k), B(k)) ≤ dimker(L,B),

dim coker(L(k), B(k)) ≤ dim coker(L,B).

In particular:

1. If l = mr and the operator (L,B) is reversible, then the operators (L(k), B(k)) are also
reversible for large k.

2. If the boundary-value problem (1), (2) has a solution for any values of the right-hand sides,
then the boundary-value problems (5), (6) also have a solution for large k.

3. If the boundary-value problem (1), (2) has a unique solution, then the problems (5), (6) also
have a unique solution for each sufficiently large k.

Let us consider parameterized by number ε ∈ [0, ε0), ε0 > 0, linear boundary-value problem

L(ε)y(t, ε) := y(r)(t, ε) +
r∑

j=1

Ar−j(t, ε)y
(r−j)(t, ε) = f(t, ε), t ∈ (a, b), (7)

B(ε)y( · ; ε) = c(ε), (8)

where for every fixed ε the matrix-valued functions Ar−j( · ; ε) ∈ (Wn
p )

m×m, the vector-valued
function f( · ; ε) ∈ (Wn

p )
m, the vector c(ε) ∈ Crm, B(ε) is the linear continuous operator B(ε) :

(Wn+r
p )m → Crm, and the solution (the unknown vector-valued function) y( · ; ε) ∈ (Wn+r

p )m.
It follows from Theorem 1 that the boundary-value problem (7), (8) is a Fredholm one with

index zero.

Definition 2. A solution to the boundary-value problem (7), (8) depends continuously on the
parameter ε at ε = 0 if the following two conditions are satisfied:

(∗) there exists a positive number ε1 < ε0 such that for any ε ∈ [0, ε1) and arbitrary chosen
right-hand sides f( · ; ε) ∈ (Wn

p )
m and c(ε) ∈ Crm this problem has a unique solution y( · ; ε)

that belongs to the space (Wn+r
p )m;
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(∗∗) the convergence of the right-hand sides f( · ; ε) → f( · ; 0) in (Wn
p )

m and c(ε) → c(0) in Crm

as ε → 0+ implies the convergence of the solutions y( · ; ε) → y( · ; 0) in (Wn+r
p )m.

Consider the following conditions as ε → 0+:

(0) the limiting homogeneous boundary-value problem

L(0)y(t, 0) = 0, t ∈ (a, b), B(0)y( · , 0) = 0

has only the trivial solution;

(I) Ar−j( · ; ε) → Ar−j( · ; 0) in the space (Wn
p )

m×m for each number j ∈ {1, . . . , r};

(II) B(ε)y → B(0)y in the space Crm for every y ∈ (Wn+r
p )m.

Theorem 4. A solution to the boundary-value problem (7), (8) depends continuously on the pa-
rameter ε at ε = 0 if and only if this problem satisfies condition (0) and the conditions (I) and
(II).

We supplement our result with a two-sided estimate of the error ∥y( · ; 0)− y( · ; ε)∥n+r,p of the
solution y( · ; ε) via its discrepancy

d̃n,p(ε) :=
∥∥L(ε)y( · ; 0)− f( · ; ε)

∥∥
n,p

+
∥∥B(ε)y( · ; 0)− c(ε)

∥∥
Crm .

Here, we interpret y( · ; 0) as an approximate solution to problem (7), (8).

Theorem 5. Suppose that the boundary-value problem (7), (8) satisfies conditions (0), (I) and (II).
Then there exist positive numbers ε2 < ε1 and γ1, γ2 such that, for any ε ∈ (0, ε2), the following
two-sided estimate is true:

γ1 d̃n,p(ε) ≤
∥∥y( · ; 0)− y( · ; ε)

∥∥
n+r,p

≤ γ2 d̃n,p(ε),

where the quantities ε2, γ1, and γ2 do not depend of y( · ; ε) and y( · ; 0).

Thus, the error and discrepancy of the solution y( · ; ε) to the boundary-value problem (7), (8)
are of the same degree of smallness.

The results are published in [1, 3–7]. The most general class of multi-point boundary-value
problems for systems of linear ordinary differential equations of an arbitrary order is considered
in [2].
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