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Abstract. For generalized Emden–Fowler type equations we obtain conditions on initial values
providing uniqueness or non-uniqueness of solutions.

1 Introduction and Basic Notation
Consider the equation

y′′ = p(x, y, y′)|y|k0± |y′|k1± , (1.1)

where |a|b± denotes |a|b sgn a and a positive continuous function p is locally Lipschitz continuous in
the last two arguments. The real constants k0 and k1 are positive.

Given any x0, y0, y1 ∈ R, equation (1.1) has a solution defined in a neighborhood of x0 ∈ R
and satisfying the initial conditions

y(x0) = y0, y′(x0) = y1. (1.2)

Our purpose is to know whether or not the above solution is unique. To obtain results, we use
some methods of [1]. In some simple cases the results coincide with those of [2] and [3].

Without loss of generality, suppose x0 = 0. Put

p0 = p(0, 0, 0) > 0,

pm(X) = inf
{
p(x, u, v) : |x| ≤ X, |u| ≤ X, |v| ≤ X

}
,

pM (X) = sup
{
p(x, u, v) : |x| ≤ X, |u| ≤ X, |v| ≤ X

}
,

and note that pm(X) → p0 and pM (X) → p0 as X → +0.
Since p is locally Lipschitz continuous in the last two arguments, we may assume it to satisfy

the inequalities

|p(x, u, v)− p(x,w, v)| ≤ p0λX |u− w| and |p(x, u, v)− p(x, u, w)| ≤ p0λX |v − w|

for some λX > 0 and for all real x, u, v, w ∈ [−X;X].

2 Main Results
Theorem 2.1. If k0 ∈ (0; 1), y0 = 0, y1 ̸= 0, then in a neighborhood of 0 equation (1.1) has a
unique solution satisfying (1.2).
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Theorem 2.2. If k1 ∈ (0; 1), y0 ̸= 0, y1 = 0, then equation (1.1) has at least two solutions
satisfying (1.2) and differing at points arbitrarily close to 0.

Theorem 2.3. If k0 > 0, k1 > 0, k0 + k1 ≥ 1, y0 = y1 = 0, then in a neighborhood of 0 equation
(1.1) has a unique solution satisfying (1.2).

Theorem 2.4. If k0, k1, k0 + k1 ∈ (0; 1) and y0 = y1 = 0, then in a neighborhood of 0 equation
(1.1) has at least two solutions satisfying (1.2) and differing at points arbitrarily close to 0.

3 Proofs

Proof of Theorem 2.1. According to the equation and initial conditions, we have

y(x) =

x∫
0

y′(ξ) dξ and y′(x) = y1 +

x∫
0

p

(
η,

η∫
0

y′(ξ) dξ, y′(η)

)∣∣∣∣
η∫

0

y′(ξ) dξ

∣∣∣∣k0
±
|y′(η)|k1± dη.

The last expression can be written as F (y′, y′, y′, y′)(x), where

F (u1, u2, u3, u4)(x) = y1 +

x∫
0

p

(
η,

η∫
0

u1(ξ) dξ, u2(η)

)∣∣∣∣
η∫

0

u3(ξ) dξ

∣∣∣∣k0
±
|u4(η)|k1± dη

for any continuous functions u1, u2, u3, u4.
Suppose y and z are different solutions to (1.1), (1.2). There exists a segment [−X;X] with

0 < X < 1 such that both y′(x)/y1 and z′(x)/y1 are contained in [12 ; 2] for any x ∈ [−X;X].
Put δ = sup{|y′(x)− z′(x)| : x ∈ [−X;X]}. We have

|y′(x)− z′(x)| =
∣∣F (y′, y′, y′, y′)(x)− F (z′, z′, z′, z′)(x)

∣∣
≤

∣∣F (y′, y′, y′, y′)(x)− F (y′, y′, y′, z′)(x)
∣∣+ ∣∣F (y′, y′, y′, z′)(x)− F (y′, y′, z′, z′)(x)

∣∣
+
∣∣F (y′, y′, z′, z′)(x)− F (y′, z′, z′, z′)(x)

∣∣+ ∣∣F (y′, z′, z′, z′)(x)− F (z′, z′, z′, z′)(x)
∣∣.

Now we estimate, on [−X;X], each summand of the last sum. For the second one, we use the
inequality

∣∣|a|k± − |b|k±
∣∣ ≤ k|a− b|

min{|a|, |b|}1−k
whenever 0 < k < 1 and sgn a = sgn b ̸= 0.

So, ∣∣F (y′, y′, y′, y′)(x)− F (y′, y′, y′, z′)(x)
∣∣ ≤ X · pM (X) · |2y1X|k0 · k1|y1|k1−12|k1−1|δ,∣∣F (y′, y′, y′, z′)(x)− F (y′, y′, z′, z′)(x)
∣∣ ≤ pM (X) · k0

k0 + 1
Xk0+1

∣∣∣ 2
y1

∣∣∣1−k0
δ · |2y1|k1 ,∣∣F (y′, y′, z′, z′)(x)− F (y′, z′, z′, z′)(x)

∣∣ ≤ X · p0λXδ · |2y1X|k0 · |2y1|k1 ,∣∣F (y′, z′, z′, z′)(x)− F (z′, z′, z′, z′)(x)
∣∣ ≤ X ·Xp0λXδ · |2y1X|k0 · |2y1|k1 .

Now we choose X > 0 small enough to make each right-hand side of the four inequalities less than
δ/8. This yields |y′(x)− z′(x)| < δ/2 on [−X;X], contradicting to the definition of δ.
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Proof of Theorem 2.2. Without loss of generality we assume y0 > 0.
The first solution to (1.1), (1.2) is evident: y ≡ y0. To find another one, put α = 1

1−k1
> 1 and

consider the first-order 2-dimensional system
y′(x) = |v(x)|α,

v′(x) =
|y(x)|k0±

α
p
(
x, y(x), |v(x)|α

)
with the initial conditions y(0) = y0, v(0) = 0.

Since y0 ̸= 0, this initial value problem is regular in a neighborhood of the point (0, y0, 0)
regardless of whether or not k0 is less than 1. Hence the problem has a solution defined in a
neighborhood of 0. It follows from the second equation of the system that v′(0) ̸= 0 and therefore
y′(x), which equals |v(x)|α, vanishes at 0 but cannot be identically zero in any neighborhood of 0.
So, y cannot be constant.

Further, y(x), v(x), and y′(x) are positive for x > 0 and

y′′(x) = αv(x)α−1 y(x)
k0

α
p(x, y(x), v(x)α) = y′(x)(α−1)/α y(x)k0p(x, y(x), y′(x)).

Since (α−1)/α = k1, the function y(x) is a solution to (1.1), (1.2) other than the constant one.

Proof of Theorem 2.3. The existence of a solution is evident even without the Peano existence
theorem since y ≡ 0 surely satisfies both (1.1) and (1.2). So, we have to prove that no other solution
exists in a sufficiently small neighborhood of 0.

First, consider constant-sign solutions to (1.1), (1.2) with constant-sign derivative in a half-
neighborhood of 0. Here we have the following equivalences for such solutions (as x → 0):

y′′(x)|y′(x)|1−k1 ∼ p0 |y(x)|k0± y′(x),
(
log |y′| sgn y′

)′
(x) ∼ p0

k0 + 1

(
|y|k0+1

)′
(x) if k1 = 2,

(
|y′|2−k1

±
)′
(x) ∼ (2− k1)p0

k0 + 1

(
|y|k0+1

)′
(x) if k1 ̸= 2.

The right-hand sides of the two last equivalences are the derivatives of bounded functions. The
same must be true for equivalent functions. But in the case k1 ≥ 2, the left-hand sides are the
derivatives of unbounded functions. Because of this contradiction, we go on with the case k1 < 2
only. By L’Hôpital’s rule, the last equivalence invokes

|y′(x)|2−k1
± ∼ (2− k1)p0

k0 + 1
|y(x)|k0+1,

y′(x) ∼
((2− k1)p0

k0 + 1

)1/(2−k1)
|y(x)|(k0+1)/(2−k1),

(
log |y| sgn y

)′
(x) ∼

((2− k1)p0
k0 + 1

)1/(2−k1)
if k0 + 1 = 2− k1,

(
|y|1−(k0+1)/(2−k1)

±
)′
(x) ∼

((2− k1)p0
k0 + 1

)1/(2−k1)(
1− k0 + 1

2− k1

)
if k0 + 1 ̸= 2− k1.

By the conditions of the theorem, the exponent of |y|± in the last equivalence, which equals

1− k0 + 1

2− k1
=

1− k0 − k1
2− k1

,
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is negative. Hence, the left-hand sides of the last two equivalences are the derivatives of un-
bounded functions but are equivalent to finite constants. This contradiction shows that in any
half-neighborhood of 0 there is no constant-sign solution to (1.1), (1.2) with constant-sign deriva-
tive, besides the trivial solution y ≡ 0.

Now, what about non-constant-sign solutions? If such a solution pretends to disprove the
statement of the theorem, its domain must include a monotonic sequence of disjoint intervals
(aj ; bj) such that

(i) y(x)y′(x) ̸= 0 on (aj ; bj),

(ii) y(aj)y
′(aj) = 0,

(iii) y(bj)y
′(bj) = 0,

(iv) aj → 0 and bj → 0 as j → ∞.
Note that neither y(aj) = y′(aj) = 0 nor y(bj) = y′(bj) = 0 can hold because of the first part

of our proof. Neither y(aj) = y(bj) = 0 nor y′(aj) = y′(bj) = 0 can hold because of condition (i),
Rolle’s lemma, and equation (1.1). If y(aj) = 0 and y′(aj) > 0, then, according to (1.1), we have
y(x) > 0, y′(x) > 0, and y′′(x) > 0 on (aj ; bj), which makes (iii) impossible. Similarly, if y(bj) = 0
and y′(bj) > 0, then we have y(x) < 0, y′(x) > 0, and y′′(x) < 0 on (aj ; bj), which also makes (iii)
impossible. So, only the cases y(aj) = 0, y′(aj) < 0, y(bj) < 0, y′(bj) = 0 and y(aj) > 0, y′(aj) = 0,
y(bj) = 0, y′(bj) < 0 are possible. A pair of such segments can match at a common end-point with
y(x) = 0. But outside their union the solution can only stay constant or move away from zero.
Thus, it cannot satisfy (1.2).

Proof of Theorem 2.4. The first solution to (1.1), (1.2) is y ≡ 0. To find another one, put
β = k0+1

1−k0−k1
> 1 and consider the operators acting on the space of positive continuous functions

by the following formulae with u ∈ C[0;X], X > 0, and x ∈ [0;X]:

Y (u)(x) =

x∫
0

sβu(s) ds,

P (u)(x) = p
(
x, Y (u)(x), xβu(x)

)
,

Q(u)(x) = Y (u)(x)k0 · (xβu(x))k1 · P (u)(x),

F (u)(x) = x−β

x∫
0

Q(u)(s) ds.

The last one can be well defined also for x = 0 and can be shown to be a contraction. Thus, F has
a unique fixed point, i.e. a positive continuous function u on [0;X] such that F (u) = u.

Consider the function y = Y (u). According to the definition of the operator Y , we have
y(0) = y′(0) = 0. Further,

y′(x) = xβu(x) = xβF (u)(x) =

x∫
0

Q(u)(s) ds,

whence

y′′(x) = Q(y)(x) = Y (u)(x)k0 · (xβu(x))k1 · P (u)(x)

= y(x)k0y′(x)k1p
(
x, Y (u)(x), xβu(x)

)
= y(x)k0y′(x)k1p(x, y(x), y′(x)).

So, y is a solution to (1.1), (1.2). It is positive on (0;X] and therefore is just another solution from
the statement of the theorem.
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4 Summary

n = 2 0, 0 Y0, 0 0, Y1 Y0, Y1

k0 ≥ 1, k1 ≥ 1 U U U U

k0 < 1, k1 ≥ 1 U : Th2.3 U U : Th2.1 U

k0 ≥ 1, k1 < 1 U : Th2.3 N : Th2.2 U U

k0 + k1 ≥ 1, k0 < 1, k1 < 1 U : Th2.3 N : Th2.2 U : Th2.1 U

k0 + k1 < 1 N : Th2.4 N : Th2.2 U : Th2.1 U

The first column of the above table contains conditions on the positive coefficients kj . The
first row describes initial data, y(0) and y′(0), with Y0 and Y1 denoting any non-zero value. In the
main part of the table, “U” denotes the uniqueness of solutions to (1.1), (1.2) under the related
conditions. “N” denotes non-uniqueness. These labels are followed by references to the related
theorems. If not, then the classical existence and uniqueness theorem is implied.

Remark. Asymptotic behavior of unbounded solutions to equation (1.1) with additional conditions

0 < p∗ ≤ p(x, u, v) ≤ p∗ < ∞, for some p∗, p
∗ ∈ R and all (x, u, v) ∈ R3,

is obtained in [4]. Asymptotic behavior of the first derivatives of bounded solutions is described
in [5].
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