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In [0, T ] we consider the multi-point problem for the second order differential equation with
piecewise-constant argument of generalized type

ẍ = a1(t)ẋ(t) + a2(t)x(t) + a3(t)ẋ(γ(t)) + a4(t)x(γ(t)) + f(t), (1)
N∑
j=0

{
b1j ẋ(θj) + c1jx(θj)

}
= d1, (2)

N∑
j=0

{
b2j ẋ(θj) + c2jx(θj)

}
= d2, (3)

where x(t) is unknown function, the functions ai(t), i = 1, 4 and f(t) are continuous on [0, T ];
0 = θ0 < θ1 < · · · < θN−1 < θN = T , θj ≤ ζj ≤ θj+1 for all j = 0, 1, · · · , N − 1: γ(t) = ζj if
t ∈ [θj , θj+1), j = 0, N − 1; bsj , csj and ds are constants, where s = 1, 2; j = 0, N .

A solution to problem (1)–(3) is a function x(t), twice continuously differentiable on [0, T ], it
satisfies equation (1) and the multi-point conditions (2), (3).

The study of differential equations with piecewise-constant argument began with the works by
Cook, Busenberg, Wiener, and Shah [11–13,27,28]. Many researchers have extensively studied the
questions of the existence and uniqueness of solutions, oscillations and stability, integral manifolds
and periodic solutions, etc. Differential equations with piecewise-constant argument have been used
to develop various models in biology, mechanics, and electronics.

When models are described by differential equations with piecewise-constant argument, the
deviation of the argument values is always constant and equal to one, since the greatest integer
function is taken as the deviation of the argument. But this approach can contradict real phenom-
ena. In the works by Akhmet [2–4], the greatest integer function as deviating argument was replaced
by an arbitrary piecewise constant function. Thus, differential equations with piecewise-constant
argument of generalized type are more suitable for modeling and solving various application prob-
lems, including areas of neural networks, discontinuous dynamical systems, hybrid systems, etc. To
date, the theory of differential equations with piecewise-constant argument of generalized type on
the entire axis has been developed and their applications have been implemented. The results were
extended to periodic impulse systems of differential equations with piecewise-constant argument
of generalized type [5–10]. Along with the study of various properties of differential equations
with piecewise-constant argument, a number of authors investigated the questions of solvability
and construction of solutions to boundary value problems for these equations on a finite inter-
val [14,19–23,25,26,29–31]. Particular attention was paid to periodic and multi-point problems for
second order differential equations with piecewise-constant argument due to their wide application
to natural sciences and engineering [1, 18,24].

Although the theory of boundary value problems for differential equations with piecewise-
constant argument has been developed by a number of researchers, the question of solvability
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of boundary value problems for systems of differential equations with piecewise-constant argument
of generalized type on a finite interval still remains open.

Therefore, the questions of solvability of boundary value problems for such equations are of
great importance and relevance. The construction of new general solutions to second order differ-
ential equations with piecewise-constant argument of generalized type and investigation into their
properties provides an opportunity to solve new classes of problems.

In the present paper, the ideas and results of [15–17] are extended to second order differential
equations with piecewise-constant argument of generalized type. We study conditions for unique
solvability of multi-point problem for second order differential equation with piecewise-constant
argument of generalized type (1)–(3) and construct the algorithms for finding its solution. For this
we use the Dzhumabaev parameterization method [15]. The results can be used in the numerical
solving of application problems [16].

At first, we introduce new functions z(1)(t) = x(t), z(2)(t) = ẋ(t) and rewrite problem (1)–(3)
in the following form

ż = A(t)z(t) +A0(t)z(γ(t)) + g(t), (4)
N∑
j=0

Cjz(θj) = d, (5)

where z(t) = col(z(1)(t), z(2)(t)) is unknown vector function,

A(t) =

(
0 1

a2(t) a1(t)

)
, A0(t) =

(
0 0

a4(t) a3(t)

)
, g(t) =

(
0

f(t)

)
,

Cj =

(
c1j b1j
c2j b2j

)
, j = 0, N, d =

(
d1
d2

)
.

A solution to problem (4), (5) is a two-dimensional vector function z(t) which is continuously
differentiable on [0, T ], it satisfies system (4) and the multi-point condition (5).

Denote by ∆N a partition of the interval [0, T ): [0, T ) =
N∪
r=1

[θr−1, θr) by lines t = θj , j =

1, N − 1. Let zr(t) be a restriction of function z(t) on rth interval [θr−1, θr), i.e. zr(t) = z(t) for
t ∈ [θr−1, θr), r = 1, N . Then problem (4), (5) reduce to the following equivalent problem

żr = A(t)zr(t) +A0(t)zr(ζr−1) + g(t), t ∈ [θr−1, θr), r = 1, N, (6)
N−1∑
j=0

Cjzj+1(θj) + CN lim
t→T−0

zN (t) = d, (7)

lim
t→θp−0

zp(t) = zp+1(θp), p = 1, N − 1. (8)

In (4) we take into account that γ(t) = ζj if t ∈ [θj , θj+1), j = 0, N − 1. Condition (8) is the
continuity condition of function z(t) on the interior lines t = tp, p = 0, 1, 2, . . . , N − 1.

Introduce additional parameters λr = zr(ζr−1) for all r = 1, N . On every rth interval we change
function zr(t) by ur(t) = zr(t)− λr r = 1, N .

Then, from (6)–(8), we obtain the following problem with parameters
u̇r = A(t)ur(t) + [A(t) +A0(t)]λr + g(t), t ∈ [θr−1, θr), ur(ζr−1) = 0, r = 1, N, (9)

N−1∑
j=0

Cjλj+1 +
N−1∑
j=0

Cjuj+1(θj) + CNλN + CN lim
t→T−0

uN (t) = d, (10)

λp + lim
t→θp−0

zp(t) = λp+1 + zp+1(θp), p = 1, N − 1. (11)
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Problems (9) are the Cauchy problems for a system of ordinary differential equations with param-
eters. Conditions (10), (11) are the relations for determining unknown parameters λr, r = 1, N .

Let Xr(t) be a fundamental matrix of differential equation u̇r = A(t)ur(t) for t ∈ [θr−1, θr),
r = 1, N . Then, solutions of the Cauchy problems (9) have the following form

ur(t) = Xr(t)

t∫
ζr−1

X−1
r (τ)[A(τ) +A0(τ)] dτλr

+Xr(t)

t∫
ζr−1

X−1
r (τ)g(τ) dτ, t ∈ [θr−1, θr), r = 1, N. (12)

Substituting right-hand side of (12) for t = θj , j = 0, N − 1, t = T to (10), (11), we have

N−1∑
j=0

Cj [I +Dj+1(θj)]λj+1 + CN [I +DN (T )]λN = d−
N−1∑
j=0

CjFj+1(θj)− CNFN (T ), (13)

[I +Dp(θp)]λp − [I +Dp+1(θp)]λp+1 = Fp+1(θp)− Fp(θp), p = 1, N − 1, (14)

where I is a unit matrix,

Dr(t) = Xr(t)

t∫
ζr−1

X−1
r (τ)[A(τ) +A0(τ)] dτ,

Fr(t) = Xr(t)

t∫
ζr−1

X−1
r (τ)g(τ) dτ, t ∈ [θr−1, θr), r = 1, N.

We rewrite equations (13), (14) in the following form

Q(∆N )λ = F (∆N ), λ ∈ R2N . (15)

Definition 1. Problem (1)–(3) is called uniquely solvable if, for any triple (f(t), d1, d2), where
f(t) ∈ C([0, T ], R) and d1, d2 ∈ R, it has a unique solution.

Theorem 1. Problem (1)–(3) is solvable if and only if the vector F (∆N ) is orthogonal to the kernel
of the transposed matrix (Q(∆N ))′, i.e., for any ξ ∈ Ker(Q(∆N ))′, the following equality is true:
(F (∆N ), ξ) = 0, where (·, ·) is the scalar product in R2N .

Theorem 2. Problem (1)–(3) is uniquely solvable if and only if the (2N × 2N) matrix Q(∆N ) is
invertible.
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