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We study the application of the method of averaging to the problems of optimal control over
impulsive differential equations. The procedure of averaging allows to replace the original problem
with the problem of optimal control by a system of ordinary differential equations. The optimal
control problems are investigated on finite and infinite horizons.

Introduction
For a system of differential equations with an impulsed action at non-fixed moments of time

ẋ = εX(t, x, u), t ̸= ti(x),

△x
∣∣
t=ti(x)

= εIi(x, vi),

x(0) = x0, ti(x) < ti+1(x),

(0.1)

two optimal control problems on a finite and infinite interval with a quality criterion are considered:
(1) on a finite interval with a quality criterion are considered:

J1
ε (u, v) = ε

T
ε∫

0

Φ(t, x(t), u(t)) dt+ ε
∑

0<ti(x)<
T
ε

Ψi(x(ti), vi) −→ inf, (0.2)

(2) on an infinite interval with a quality criterion are considered:

J2
ε (u, v) = ε

∞∫
0

e−γtL(t, x(t)) dt −→ inf . (0.3)

Here T > 0, ε > 0, γ > 0 are fixed; t ≥ 0, x ∈ D is a domain in the space Rd, u ∈ U ⊂ Rm,
vi ∈ V ⊂ Rr, where U and V are the subsets in the spaces Rm and Rr, respectively. We denote by
| · | the Euclidean norm of the vector, and by ∥ · ∥ we denote the norm of the matrix consistent
with the norm of the vector.

Controls of u = u(t) = (u1(t), u2(t), . . . , um(t)) and v = vi = (vi1, vi2, . . . , vir) will be considered
admissible for problems (0.1)–(0.3) if:
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(a1) the function u(t) is measurable and locally integrated at t ≥ 0;

(a2) u(t) ∈ U , t ≥ 0;

(a3) for every u(t) there exists a constant u0 ∈ U such that u(t) → u0 for t → ∞ uniformly for all
controls, i.e. for arbitrary δ > 0 there exists a constant T0 > 0, independent of u(t), u0, such
that for all t ≥ T0 the inequality |u(t)− u0| < δ holds;

(a4) for each sequence of vectors vi there exists v0 ∈ V such that vi → v0, i → ∞ uniformly for all
controls, i.e. for arbitrary δ > 0 there exists a constant N0, independent of vi, v0, such that
for all i ≥ N0 the inequality |vi − v0| < δ is satisfied;

(a5) condition |Jε(u, v)| < ∞ holds for functional (0.3).

Note that conditions (a3) and (a4) are obviously satisfied if there exist a function φ(t) → 0,
and a sequence φ(t) → 0, t → ∞ which are independents of u(t) and vi, respectively, such that
|u(t)−u0| ≤ φ(t), � |vi− v0| < ai. Condition (a3) for control, first appeared in M. M. Moiseyev [3],
when applying the method of averaging to practical problems. In this monograph, such controls
are called asymptotically constant.

We denote the set of admissible controls of problems (0.1), (0.2) and (0.1)–(0.3) by F1 and F2,
respectively. In this case,

J1
ε = inf

(u,v)∈F1

J1
ε (u, v)

and
J2
ε = inf

(u,v)∈F2

J2
ε (u, v).

Denote by xε(t, u, v) the solution of the Cauchy problem corresponding to the admissible control
(u, v). The triple (x∗ε(t, u, v), u

∗
ε, v

∗
ε) is optimal for problems (0.1)–(0.3) if (u∗ε, v∗ε) is an admissible

pair and J1
ε (u

∗
ε, v

∗
ε) = J1

ε for functional (0.2), or J2
ε (u

∗
ε, v

∗
ε) = J2

ε for functional (0.3).
Let the averaging conditions be satisfied:

(a6) there are limits uniformly across t ≥ 0, x ∈ D, u ∈ U , v ∈ V :

lim
s→∞

1

s

s+t∫
t

X(τ, x, u) dτ = X0(x, u), (0.4)

lim
s→∞

1

s

∑
t<ti(x)<s+t

Ii(x, v) = I0(x, v), (0.5)

lim
s→∞

1

s

s+t∫
t

Φ(τ, x, u) dτ = Φ0(x, u), (0.6)

lim
s→∞

1

s

∑
t<ti(x)<s+t

Ψi(x, v) = Ψ0(x, v). (0.7)

With respect to the moments of impulse action, we will assume that there exists a constant
C > 0 such that for t ≥ 0, x ∈ D ∑

t<ti(x)<s+t

Ii ≤ Cs. (0.8)
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We will put averaged tasks in accordance with the problems of optimal control (0.1)–(0.3)

ẏ = ε[X0(y, u0) + I0(y, v0)], y(0) = x0, (0.9)

J
1
ε (u0, v0) = ε

T
ε∫

0

[
Φ0(y(t), u0) + Ψ0(y(t), v0)

]
dt −→ inf, (0.10)

J
2
ε (u0, v0) = ε

∞∫
0

e−γtL(t, y(t)) dt −→ inf, (0.11)

where u0 ∈ U , v0 ∈ V are already constant vectors. These tasks are much simpler than the
original ones because they are problems of optimal control for systems of ordinary differential
equations. Denote by analogy as in the case of initial problems J

1
ε = inf

(u0,v0)∈F1

J
1
ε (u0, v0) and

J
2
ε = inf(u,v)∈F2

J
2
ε (u0, v0).

The main result is obtained which states that the optimal control (u∗0(ε), v
∗
0(ε)) of averaged

problems is η-optimal for the initial problems, namely, for arbitrary η > 0 there exists ε0 > 0 such
that for all ε ∈ (0, ε0) the inequalities:∣∣J1

ε (u
∗
0(ε), v

∗
0(ε))− J1

ε

∣∣ < η,
∣∣J2

ε (u
∗
0(ε), v

∗
0(ε))− J2

ε

∣∣ < η

are satisfied.
It is known that the averaging method is one of the most common methods of analyzing non-

linear dynamic systems. For ordinary differential equations, this method was substantiated by
M. M. Bogolyubovym [1]. The validation of this method for systems with impulse action in the
general form was first obtained in [6]. We also note the works [7, 9], where the results of [6] have
been further developed.

The averaging method also proved to be effective for solving problems of optimal control. A
number of papers are devoted to this question (see, for example, [5], where there is an extensive
bibliography). In [4] developed a different approach as for to applying the averaging method to
tasks of optimal control, namely, considering the control function u as a parameter, was averaging
over by time, that clearly included in the right-parts sides of the system.

In this paper, the approach under consideration is applied to the problems of optimal control of
impulse systems with non-fixed moments of impulse actions. Such problems with the application
of the principle of maximum were previously studied in [8].

This paper describes the problem formulation and reviews the literature, gives strict formu-
lation of the problem, and presents the main results obtained when solving the problems under
consideration.

1 Statement of the problem and formulation of the main results
In what follows, we consider the following conditions for problems (0.1)–(0.3) and their correspond-
ing averaged problems (0.9)–(0.11):
2.1. The functions X, Ii, Φ, Ψi, L are uniformly continuous on the set of variables at t ≥ 0, x ∈ D,

u ∈ U , v ∈ V , evenly at i = 1, 2, . . . .

2.2. There is a positive constant M such that∣∣∣∂ti(x)
∂x

∣∣∣+ |X(t, x, u)|+ |Φ(t, x, u)|+ |Ψi(x, v)|+ |Ii(x, v)| ≤ M,

for t ≥ 0, x ∈ D, u ∈ U , v ∈ V , i = 1, 2, . . . .



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 187

2.3. There is a positive constant K such that

|X(t, x, u)−X(t, x1, u)|+ |Ii(x, v)− Ii(x1, v)|+ |Φ(t, x, u)− Φ(t, x1, u)|

+ |Ψi(x, v)−Ψi(x1, v)|+
∣∣∣∂ti(x)

∂x
− ∂ti(x1)

∂x

∣∣∣ ≤ K|x− x1|,
∣∣∣∂ti(x)

∂x

∣∣∣ ≤ K

for t ≥ 0, x, x1 ∈ D, i = 1, 2, . . . , u ∈ U , v ∈ V .

2.4. Condition (a5) is satisfied.

2.5. The averaged Cauchy problem (0.9) has the solution y(εt) = y(εt, x0, u0, v0), y(0, x0, u0, v0) =
x0, which for ε = 1 belongs to D for t ∈ [0, T ] together with some own ρ-circle (independent
of u0, v0) and the inequality

∂ti(y(εt))

∂x
Ii(y(εt), v) ≤ β < 0

holds when t′i < t < t′′i , v ∈ V , or
∂ti(x)

∂x
≡ 0.

Here
t′i = inf

x∈D
ti(x), t′′i = sup

x∈D
ti(x), i = 1, l, tl <

T

ε
< tl+1.

The following theorem is on the connection between problems of optimal control on finite time
intervals.

Theorem 1.1 ([2]). Let conditions 2.1–2.5 be satisfied and there be an optimal control (u∗0(ε), v∗0(ε))
of the averaged problem (0.9), (0.10) for 0 < ε ≤ ε0. Then for arbitrary η > 0 there exists
ε1 = ε1(η, ε0) > 0 such that for all ε ∈ (0, ε1) the following conditions hold:

(1) J1
ε > −∞;

(2) the inequality holds
|J1

ε (u
∗
0(ε), v

∗
0(ε))− J1

ε | ≤ η. (1.1)

Remark 1.1. If the conditions of Theorem 1.1 state that the sets of admissible controls U and V
are compact, then the optimal control (u∗0(ε), v∗0(ε)) of the averaged problem exists.

Indeed, the solution of the averaged problem (0.9) extends to the interval [0, Tε ]. Conditions of
Theorem 1.1 imply that y(t, u0, v0) is a continuous function of the parameters u0 and v0, therefore,
Lebesgue’s theorem on majorized convergence also implies the continuity of J

1
ε (u0, v0) over u0

and v0. The statement of Remark 1.1 is now a consequence of the Weierstrass theorem.

Remark 1.2. If X0(y, u0)+ I0(y, v0), Φ0(y, u0)+Ψ0(y, v0) are continuous differentiated functions,
then problem (0.9), (0.10) is a smooth finite-dimensional extremal problem.

Consider the problem of optimal control on the axis, for this system (0.9) we write at “slow
time”: τ = εt:

dy

dτ
=

[
X0(y, u0) + I0(y, v0)

]
, y(0) = x0. (1.2)
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Theorem 1.2 ([2]). Let the conditions 2.1–2.5 hold, and let the solution y(τ) = y(τ, x0, u0, v0) of
the Cauchy problem (1.2) be uniformly asymptotically stable at τ0, u0 and v0, and belong to the
domain D at τ ≥ 0 together with its some p-circle (independent of u0, v0), and the inequalities
∂ti(x)
∂x Ii(x) ≤ β < 0 (or ∂ti(x)

∂x ≡ 0) hold for all i = 1, 2, . . . and x from some ρ0-circle of the solution
y(τ).

Then, if there is an optimal control (u∗0(ε), v
∗
0(ε)) for ε ∈ (0, ε0] of the averaged problem

(0.9), (0.11), then for arbitrary h> 0 there is ε1 = ε1(ε0, η) > 0 such that

(1) for arbitrary ε ∈ (0, ε1), it holds |J2
ε | < ∞;

(2) the inequality |J2
ε (u

∗
0(ε), v

∗
0(ε))− J2

ε | ≤ η holds.

Remark 1.3. If under Theorem 1.2 the sets of admissible controls are compact, then optimal
control of the averaged problem (0.9), (0.10) exists.

This observation follows from a continuous dependence on the parameters at each finite in-
terval of the solution y(t, u0, v0) and Lebesgue, Weierstrass theorems. The proof is based on the
corresponding result by A. M. Samoilenko from [6, Theorem 1] for unmanaged impulse systems.
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