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1 Introduction
Let T > 0 be given, J = [0, T ] and X = C(J)× C(J).

We investigate the system of fractional differential equations

cDαu(t) + p(t)cDα1u(t) = f(t, u(t), v(t)),

cDβv(t) + q(t)cDβ1v(t) = g(t, u(t), v(t)),

}
(1.1)

where 0 < α1 < α ≤ 1, 0 < β1 < β ≤ 1, p, q ∈ C(J), f, g ∈ C(J × R2) and cD denotes the Caputo
fractional derivative.

Let K,R : C(J) → R be functionals given as

Kx =

m1∑
k=1

ckx(ρk), Rx =

m2∑
k=1

dkx(ξk),

where mj ∈ N or mj = ∞, j = 1, 2, {ρk}m1
k=1 ⊂ (0, T ], {ξk}m2

k=1 ⊂ (0, T ] are increasing sequences

and ck > 0, dk > 0,
m1∑
k=1

ck = 1,
m2∑
k=1

dk = 1.

Together with system (1.1) we study the boundary condition

(u(0), v(0)) = (Ku,Rv). (1.2)

Definition 1.1. We say that (u, v) : J → R2 is a solution of system (1.1) if (u, v), (cDαu, cDβv) ∈ X
and (u, v) satisfies (1.1) for t ∈ J . A solution (u, v) of (1.1) satisfying the boundary condition (1.2)
is called a solution of problem (1.1), (1.2).

Since each constant vector-function (u, v) on the interval J is a solution of problem cDαu +
p(t)cDα1u = 0, cDβv + q(t)cDβ1v = 0, (1.2), problem (1.1), (1.2) is at resonance.

We recall the definitions of the Riemann–Liouville fractional integral and the Caputo fractional
derivative [1, 2].

The Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is defined
as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s) ds,

where Gamma is the Euler gamma function. I0 is the identical operator.
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The Caputo fractional derivative cDγx of order γ ∈ (0, 1) of a function x : J → R is given as

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0)) ds =

d

dt
I1−γ (x(t)− x(0)).

If γ = 1, then cDγx(t) = x′(t).
The special case of (1.1) (for α = 1, β = 1) is the system of generalized Basset fractional

differential equations [3]

u′(t) + p(t)cDα1u(t) = f(t, u(t), v(t)),

v′(t) + q(t)cDβ1v(t) = g(t, u(t), v(t)).

}

The special cases of (1.2) are the periodic condition

(u(0), v(0)) = (u(T ), v(T ))

and the infinite-point boundary condition

(u(0), v(0)) =
( ∞∑

k=1

cku(ρk),
∞∑
k=1

dkv(ξk)
)
.

We will work with the following conditions for the functions p, q, f and g in (1.1):

(H1) There exist D,H,K,L ∈ R, D < H, K < L, such that

f(t,D, y) > 0, f(t,H, y) < 0 for t ∈ J , y ∈ [K,L],

g(t, x,K) > 0, f(t, x, L) < 0 for t ∈ J , x ∈ [D,H].

(H2) p(t) ≥ 0 and q(t) ≥ 0 for t ∈ J .

The aim of this paper is to discuss the existence of solutions to problem (1.1), (1.2). The
existence results are proved by the following procedure. By the combination of initial value method
[4] with the maximum principle for the Caputo fractional derivative [4] and the Schaefer fixed
point theorem we first prove that for each (c1, c2) ∈ [D,H] × [K,L] there exists a solution (u, v)
of system (1.1) on the interval J satisfying the initial condition (u(0), v(0)) = (c1, c2). Then we
discuss the set C of all such solutions and show that C is a compact metric space. Assuming that
(u(0), v(0)) ̸= (Ku,Rv) for all (u, v) ∈ C we obtain a contradiction by the study of some compact
subsets of C.

2 Initial value problem
For r ∈ C(J) and γ ∈ (0, 1), let Λr,γ : C(J) → C(J) be defined as

Λr,γx(t) = −r(t)Iγx(t)

and Λ0
r,γ be the identical operator on C(J). For n ∈ N, let Λn

r,γ = Λr,γ ◦ Λr,γ ◦ · · · ◦ Λr,γ︸ ︷︷ ︸
n

be nth

iteration of Λr,γ . Let Dr,γ : C(J) → C(J) be an operator defined as

Dr,γx(t) =

∞∑
n=0

Λn
r,γx(t).
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Let (H1) hold. Let

η(x) =


H if x > H,

x if x ∈ [D,H],

D if x < D,

ρ(y) =


L if y > L,

y if y ∈ [K,L],

K if y < K,

and f∗, g∗ : J × R2 → R be given as

f∗(t, x, y) = f(t, η(x), ρ(y)), g∗(t, x, y) = g(t, η(x), ρ(y)).

Then f∗, g∗ ∈ C(J × R2) are bounded and

f∗(t, x, y) > 0 if x < D, y ∈ R, f∗(t, x, y) < 0 if x > H, y ∈ R,
g∗(t, x, y) > 0 if x ∈ R, y < K, g∗(t, x, y) < 0 if x ∈ R, y > L,

}
for t ∈ J . Let operators F ,G : X → C(J) be the Nemytskii operators associated to f∗, g∗,

F(x, y)(t) = f∗(t, x(t), y(t)), G(x, y)(t) = g∗(t, x(t), y(t)),

and A,B : C(J) → C(J),

Ax(t) = Dp,α−α1x(t), Bx(t) = Dq,β−β1x(t),

where p, q, α, α1, β and β1 are from (1.1).
We now consider the fractional initial value problem

cDαu(t) + p(t)cDα1u(t) = f∗(t, u(t), v(t)),

cDβv(t) + q(t)cDβ1v(t) = g∗(t, u(t), v(t)),

}
(2.1)

(u(0), v(0)) = (c1, c2), (c1, c2) ∈ R2. (2.2)

Let an operator Q : X → X be defined by the formula

Q(x, y) = (Q1(x, y),Q2(x, y)),

where Qj : X → C(J),

Q1(x, y)(t) = c1 + IαAF(x, y)(t), Q2(x, y)(t) = c2 + IβBG(x, y)(t),

and c1, c2 are from (2.2).
The following result gives the relation between solutions of problem (2.1), (2.2) and fixed points

of Q.

Lemma 2.1. Let (H1) hold. Then (u, v) is a fixed point of Q if and only if (u, v) is a solution of
problem (2.1), (2.2).

The existence results for problems (2.1), (2.2) and (1.1), (2.2) are stated in the following two
lemmas.

Lemma 2.2. Let (H1) hold. Then there exists at least one solution of problem (2.1), (2.2).

Let ∆ = [D,H]× [K,L], where D,H,K and L are from (H2).

Lemma 2.3. Let (H1), (H2) hold and let (c1, c2) ∈ ∆. Then problem (1.1), (2.2) has at least one
solution and all its solutions (u, v) satisfy

D < u(t) < H, K < v(t) < L for t ∈ (0, T ]. (2.3)
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3 Existence result for problem (1.1), (1.2)
Theorem 3.1. Let (H1) and (H2) hold. The problem (1.1), (1.2) has at least one solution (u, v)
and

D < u(t) < H, K < v(t) < L for t ∈ J. (3.1)

Sketch of proof. Having in mind Lemma 2.3, for (c1, c2) ∈ ∆ let C(c1,c2) be the set of all solutions
to problem (1.1), (2.2). Let

C =
∪

(c1,c2)∈∆

C(c1,c2).

Then for each (u, v) ∈ C the equalities

u(t) = u(0) + IαAF(u, v)(t), v(t) = v(0) + IβBG(u, v)(t), t ∈ J,

and inequality (2.3) hold. We can prove that C is a compact metric space equipped with the metric

ρ((u, v), (u1, v1)) = max
{
|u(t)− u1(t)| : t ∈ J

}
+max

{
|v(t)− v1(t)| : t ∈ J

}
.

Assume to the contrary that

|u(0)−Ku|+ |v(0)−Rv| > 0 for (u, v) ∈ C, (3.2)

where K,R are from the boundary condition (1.2). Condition (3.2) is equivalent to

(u, v) ∈ C =⇒

either u(0)−Ku = 0 and v(0)−Rv ̸= 0

or u(0)−Ku ̸= 0 and v(0)−Rv = 0.
(3.3)

Keeping in mind (3.3), let

P1 =
{
(u, v) ∈ C : u(0) = Ku, v(0)−Rv ̸= 0

}
,

P2 =
{
(u, v) ∈ C : u(0)−Ku ≠ 0, v(0) = Rv

}
.

Then C = P1 ∪ P2 and P1 ∩ P2 = ∅ and we can prove that P1, P2 are nonvoid compact subsets of
C. Hence the compact metric space C is the union of nonvoid, mutually disjoint compact subsets
P1,P2, which is impossible. As a result assumption (3.2) is false. Consequently, problem (1.1), (1.2)
has a solution (u, v).

It remains to prove that (u, v) satisfies inequality (3.1). We know that (u, v) satisfies inequality
(2.3). Assume, for example, that v(0) = K. Since v > K on (0, T ], we have

v(0)−Rv = v(0)−
m2∑
k=1

djv(ξj) < K −K

m2∑
k=1

dj = K −K = 0,

which contradicts v(0)−Rv = 0. Hence v > K on J .

Example 3.1. Let r, l, p, q ∈ C(J), r > 1, l > 0, and let ρ ≥ 1. Then the functions f(t, x, y) =
r(t)− ex+ e−y, g(t, x, y) = l(t)+x− |y|ρ satisfy condition (H1) for D = 0, H = ln(2+ ∥r∥), K = 0
and L = q

√
1 + ∥l∥+ ln(2 + ∥r∥). Applying Theorem 3.1, the system

cDαu+ |p(t)|cDα1u = r(t)− eu + e−v,

cDβv + |q(t)|cDβ1v = l(t) + u− |v|ρ

}
has a solution (u, v) satisfying the boundary condition (1.2) and

0 < u(t) < ln(2 + ∥r∥), 0 < v(t) < q
√

1 + ∥l∥+ ln(2 + ∥r∥) , t ∈ J.



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 183

References
[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential

Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
[2] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Ex-

position Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, 2004.
Springer-Verlag, Berlin, 2010.

[3] S. Staněk, Periodic problem for the generalized Basset fractional differential equation. Fract.
Calc. Appl. Anal. 18 (2015), no. 5, 1277–1290.

[4] S. Staněk, Periodic problem for two-term fractional differential equations. Fract. Calc. Appl.
Anal. 20 (2017), no. 3, 662–678.


