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1 The Perron stability definition
For a given zero neighborhood G in the Euclidean space Rn, we consider the system

ẋ = f(t, x), f(t, 0) = 0, t ∈ R+ ≡ [0,∞), x ∈ G, (1.1)

with the right-hand side f ∈ C1(R+ × G) admitting a zero solution. Let S∗(f) denote the set of
all non-continuable nonzero solutions x of the system (1.1), then let Sδ(f) and Sδ(f) denote its
subsets given by the initial conditions |x(0)| < δ and |x(0)| = δ, respectively.

Definition 1.1. We say that a system (1.1) (more precisely, its zero solution, implied implicitly
everywhere below) has the following Perron features:

(1) Perron stability if for any ε > 0 there is a δ > 0 such that any solution x ∈ Sδ(f) satisfies the
requirement

lim
t→∞

|x(t)| < ε; (1.2)

(2) asymptotic Perron stability if there is a δ > 0 such that any solution x ∈ Sδ(f) satisfies the
requirement

lim
t→∞

|x(t)| = 0; (1.3)

(3) Perron instability if there is no Perron stability, i.e. there is an ε > 0 such that for any δ > 0
there is a solution x ∈ Sδ(f) not satisfying the requirement (1.2) (in particular, not defined
on the whole semi-axis R+);

(4) complete Perron instability if there are ε, δ > 0 such that no solution x ∈ Sδ(f) satisfies the
requirement (1.2).

Remark 1.1. In Definition 1.1, each of the four Perron features:

(a) in a standard way (namely, with a simple shift of coordinates) extends from the zero solution
to any other one, and not only to the points of rest of the system under study;

(b) is of a local character, i.e. it depends on the behavior of only those solutions that start near
zero;

(c) characterizes the behavior of solutions starting near zero from the point of view of the pos-
sibility for them to approach the origin arbitrarily late or, conversely, ultimately move away
from it.
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The next two theorems describe some seemingly paradoxical situations.

Theorem 1.1. There is a complete Perron unstable two-dimensional system (1.1) which has at
least one solution x ∈ S∗(f) satisfying the requirement (1.3) and even the condition

lim
t→∞

|x(t)| = 0. (1.4)

Theorem 1.2. There exists a Perron unstable two-dimensional autonomous system (1.1) such that
for some δ > 0 all solutions x ∈ Sδ(f) satisfy the requirement (1.4).

2 Perron and Lyapunov stability joint properties
Definition 2.1 ([1, Ch. II, § 1]). Let us assign the Lyapunov analogue to each of the four Perron
features above:

(a) Lyapunov stability, instability and complete instability are obtained by replacing the require-
ment (1.2) in the first, third and fourth paragraphs of the Definition 1.1 respectively by the
following requirement

sup
t∈R+

|x(t)| < ε;

(b) asymptotic Lyapunov stability is obtained by replacing the requirement (1.3) in the second
paragraph of the Definition 1.1 by the requirement (1.4), but with the Lyapunov stability.

Remark 2.1. For any system (1.1) the following logical statements are true:

(1) it is either Perron (Lyapunov) stable, or Perron (respectively, Lyapunov) unstable;

(2) if it is asymptotically Perron (Lyapunov) stable, then it is Perron (respectively, Lyapunov)
stable;

(3) if it is completely Perron (Lyapunov) unstable, then it is Perron (respectively, Lyapunov)
unstable;

(4) if it is Lyapunov stable (asymptotically), then it is Perron stable (respectively, asymptoti-
cally);

(5) if it is Perron unstable (completely), then it is Lyapunov unstable (respectively, completely).

Definition 2.2. We will call strict the following varieties of Perron (Lyapunov) features:

(a) asymptotic Perron (Lyapunov) stability;

(b) non-asymptotic Perron (Lyapunov) stability;

(c) complete Perron (Lyapunov) instability;

(d) incomplete Perron (Lyapunov) instability.

Consider a linear system of the form

ẋ = A(t)x, x ∈ Rn, t ∈ R+, (2.1)

defined by its continuous operator function A : R+ → EndRn (if it is bounded, we call the system
bounded too). Denote by Sδ

A the set of solutions x of the system (2.1) satisfying the initial condition
|x(0)| = δ.

All combinations of varieties of stability features from the Definition 2.2 which are logically
admissible by the formulation of the previous remark turn out to be possible.
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Theorem 2.1. Any pair formed by any strict Perron and Lyapunov features and not conflicting
with the statements of the Remark 2.1 is implemented in some at least two-dimensional bounded
linear system (2.1).

A special role in the study on the stability of a linear (and not only) system is played by
characteristic exponents of its solutions x ∈ S∗(f) – the Lyapunov ones [2, Ch. I] and, respectively,
the Perron ones [3, § 2]

λ(x) ≡ lim
t→∞

1

t
ln |x(t)|, π(x) ≡ lim

t→∞

1

t
ln |x(t)|.

Theorem 2.2. For each n ∈ N there is a complete Lyapunov unstable, but asymptotically (non-
asymptotically) Perron stable n-dimensional bounded linear system (2.1) for which all Lyapunov
exponents are positive and all Perron exponents are negative (respectively, equal to zero).

From a practical point of view, the following two most natural situations seem to be particularly
important:

(1) asymptotic Perron stability combined with Lyapunov stability;

(2) complete Perron (and, therefore, Lyapunov) instability.

3 The important special cases
If the system (1.1) is one-dimensional, then the verification of Perron features is somewhat simplified
because of the possibility to order the solutions by increasing their initial values in the numerical
phase straight line.

Theorem 3.1. For a one-dimensional system (1.1):

(1) Perron stability is equivalent to the fact that for any ε > 0 there exist two opposite-sign
solutions x ∈ S∗(f) satisfying the requirement (1.2);

(2) asymptotic Perron stability is equivalent to the existence of two opposite-sign solutions x ∈
S∗(f) satisfying the requirement (1.3);

(3) complete Perron instability is equivalent to the existence of an ε > 0 such that for any δ > 0
there are two opposite-sign solutions x ∈ Sδ(f) that do not satisfy the requirement (1.2).

Remark 3.1. In the case of complete Perron instability, it is fundamentally excluded (due to the
continuous dependence of the solutions on the initial values) the opportunity to find ε, δ > 0, and
T ∈ R such that all at once solutions x ∈ Sδ(f) satisfy the requirement

inf
t T

|x(t)| ε. (3.1)

Despite the Remark 3.1, in both one-dimensional and autonomous cases, the situation described
in Theorem 1.1 is impossible, and the complete Perron instability still has a certain uniformity.

Theorem 3.2. If a one-dimensional or autonomous system (1.1) is completely Perron unstable,
then:

(1) for some ε > 0 no solution x ∈ S∗(f) satisfies the requirement (1.2);

(2) for any δ > 0 there exists an ε > 0 such that all solutions x ∈ S∗(f) \ Sδ(f) satisfy the
requirement (3.1) already at T = 0.
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Each of the Perron features in the case of a linear system is completely determined by the
properties of its solutions starting on some sphere.

Theorem 3.3. The Perron stability of the linear system (2.1) is equivalent to fulfilling the require-
ment

sup
x∈S1

A

lim
t→∞

|x(t)| < ∞,

and its asymptotic Perron stability or complete Perron instability is equivalent to the fact that any
solution x ∈ S1

A satisfies the requirement (1.3) or, respectively, the requirement

lim
t→∞

|x(t)| = ∞. (3.2)

In the simplest case of a linear autonomous system the Perron and Lyapunov stability analysis
lead to the identical result (unambiguously recognized by the real parts of the eigenvalues of the
operator that defines the system and the orders of its Jordan cells corresponding to the purely
imaginary ones [1, Ch. II, § 8]).

Theorem 3.4. The linear autonomous system (2.1) is Perron stable (asymptotically stable, un-
stable, completely unstable) if and only if it is Lyapunov stable (respectively, asymptotically stable,
unstable, completely unstable).

The statement of Theorem 3.4 does not extend from autonomous linear systems to a slightly
wider class of regular linear systems [1, Ch. III, § 11].

Theorem 3.5. For each n ∈ N there exists a regular bounded linear system (2.1) that is asymptot-
ically Perron stable, but completely Lyapunov unstable.

In the case of a linear system, the fulfillment of the requirements (1.3) or (3.2) not for all its
non-zero solutions, but only for those that constitute a fundamental solution system is not sufficient
for Perron stability or, respectively, complete Perron instability.

Theorem 3.6. For each n > 1, there is an n-dimensional bounded linear system (2.1) with Perron
instability (with incomplete instability) for which the Perron exponents of all solutions from some
of its fundamental systems are negative (respectively, positive).

However, in some (even non-linear) cases, the knowledge of the set of exponents of all solutions
of the system starting close to zero gives full information about the Perron and Lyapunov features.

Theorem 3.7. If for some δ > 0 the Perron (Lyapunov) exponents of all solutions x ∈ Sδ(f) of
the system (1.1) are negative, then the system is asymptotically Perron (respectively, Lyapunov)
stable, and if they are positive, then it is completely unstable.

4 The first-order stability
Let the linear part be distinguished in the right-hand side of the system (1.1), i.e. let it be
represented as

ẋ = A(t)x+ h(t, x) ≡ f(t, x), (t, x) ∈ R+ ×G, sup
t∈R+

|h(t, x)| = o(x), x → 0, (4.1)

where A(t) ≡ f ′
x(t, 0), t ∈ R+. Then for it the corresponding system (2.1) will be considered as the

first approximation system.
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Definition 4.1. We say that the first approximation system (2.1) provides a given Perron or
Lyapunov feature if any system (4.1) with this first approximation has the given one.

The study of asymptotic stability by the first approximation, which is the essence of the first
Lyapunov method, has been the subject of a huge number of works (see [3, § 11]). However,
the study by the first approximation of stability or asymptotic stability, according to Perron or
Lyapunov – all of them are possible only for the same systems.

Theorem 4.1. If a linear approximation (2.1) provides at least one of the four features: Perron
stability, Lyapunov stability, asymptotic Perron stability, or asymptotic Lyapunov stability – then
it provides the other three of them.
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