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1 Introduction
Some real world models are described by means of impulse control of nonlinear BVPs, where time
instants of impulse actions depend on intersection points of solutions with given barriers. For
i = 1, . . . ,m, and [a, b] ⊂ R, continuous functions γi : R → [a, b] determine barriers Γi = {(t, z) :
t = γi(z), z ∈ R}. A solution (x, y) of a planar BVP on [a, b] is searched such that the graph of its
first component x(t) has exactly one intersection point with each barrier, i.e. for each i ∈ {1, . . . ,m}
there exists a unique root t = tix ∈ [a, b] of the equation t = γi(x(t)). The second component y(t)
of the solution has impulses (jumps) at the points t1x, . . . , tmx. Since a size of jumps and especially
the points t1x, . . . , tmx depend on x, impulses are called state-dependent.

More precisely, for T > 0 and given continuous functions γ1, . . . , γm, we prove the existence
of a T -antiperiodic solution (x, y) of the van der Pol equation with a positive parameter µ and a
Lebesgue integrable T -antiperiodic function f

x′(t) = y(t), y′(t) = µ
(
x(t)− x3(t)

3

)′
− x(t) + f(t) for a.e. t ∈ [0, T ], t ̸∈ {t1x, . . . , tmx}, (1.1)

where y has impulses at the points t1x, . . . , tmx ∈ (0, T ) determined by the barriers Γ1, . . . ,Γm

through the equalities
tix = γi(x(tix)), i = 1, . . . ,m, (1.2)

and y is continuous anywhere else in [0, T ]. The impulse conditions have the form

y(t+)− y(t−) = Ji(x), t = tix, i = 1, . . . ,m, (1.3)

where Ji are continuous bounded functionals defining a size of jumps.
Previous results in the literature for this antiperiodic problem assume that impulse points

are values of given continuous functionals, see [1, 3]. Such formulation is certain handicap for
applications to real world problems where impulse instants depend on barriers. We have found
conditions which enable to reach such functionals from given barriers. Consequently the existence
results from [2] for impulsive antiperiodic problem to the van der Pol equation formulated in terms
of barriers are obtained.

Notations
- T -antiperiodic function x (satisfying (1.1), (1.2), (1.3)) will be found in the set of 2T -periodic

real-valued functions. To do it functional sets defined below are used.

- L1 consists of 2T -periodic Lebesgue integrable functions on [0, 2T ] with the norm ∥x∥L1 :=

1
2T

2T∫
0

|x(t)| dt,
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- BV consists of 2T -periodic functions of bounded variation on [0, 2T ],

- var(x) for x ∈ BV is the total variation of x on [0, 2T ],

- ∥x∥∞ := sup{|x(t)| : t ∈ [0, 2T ]} for x ∈ BV,

- NBV consists of normalized functions x ∈ BV in the sense that x(t) = 1
2 (x(t+) + x(t−)),

- x := 1
2T

2T∫
0

x(t) dt = 0 is the mean value of x ∈ BV,

- ÑBV consists from functions x ∈ NBV with x = 0; ÑBV with the norm var(x) is the Banach
space,

- AC(J) consists of 2T -periodic absolutely continuous functions on J ⊂ [0, 2T ] and if J = [0, 2T ]
we write AC,

- ÃC := AC∩ ÑBV.

- A couple (x, y) ∈ ÃC× ÑBV satisfying (1.1), (1.2), (1.3) is a 2T -periodic solution of problem
(1.1)–(1.3). If in addition

x(0) = −x(T ), y(0) = −y(T ), (1.4)

then (x, y) is a T -antiperiodic solution of problem (1.1)–(1.3).

2 Main result
The main existence result from [2] is contained in the next theorem.

Theorem 2.1 (Main result). Let T ∈ (0,
√
3), K,L ∈ (0,∞), let Ji, i = 1, . . . ,m, be continuous

bounded functionals on ÑBV, and let f ∈ L1 be T -antiperiodic, i.e. f(t + T ) = −f(t) for a.e.
t ∈ R. Assume that there exist a, b ∈ (0, T ) such that functions γ1, . . . , γm satisfy

0 < a ≤ γ1(z) < γ2(z) < · · · < γm(z) ≤ b < T, z ∈ [−K,K]. (2.1)

Further, assume that Li ∈ (0, 1/L), i = 1, . . . ,m, are such that

|γi(z1)− γi(z2)| ≤ Li|z1 − z2|, z1, z2 ∈ [−K,K], i = 1, . . . ,m. (2.2)

Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] problem (1.1)–(1.3) has a T -antiperiodic
solution (x, y), where y has m jumps at the points t1x, . . . , tmx ∈ [a, b] and y is continuous anywhere
else in [0, T ]. Moreover, the estimate

|x(t)| ≤ var(x) ≤ K, |y(t)| ≤ L, t ∈ [0, T ], (2.3)

is valid.

We can find the optimal (maximal) value µ0 as follows. Since Ji are bounded, it holds

Ji : ÑBV → [−ai, ai], i = 1, . . . ,m,

for some ai ∈ (0,∞). Denote

c1 := T∥f∥L1 +
m∑
i=1

ai, (2.4)
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and define a function φ by

φ(µ) :=
1− µT − T 2

3

3

√
1− µT − T 2

3

µT
, µ ∈

(
0,

1

T
− T

3

]
. (2.5)

Then, according to the proof of Theorem 2.1, µ0 = φ−1(Tc1) ∈ (0, 1
T − T

3 ).

Auxiliary results
Denote

(x ∗ y)(t) := 1

2T

2T∫
0

x(t− s)y(s) ds, t ∈ [0, 2T ] for x, y ∈ L1,

and remind the inequalities

var(x ∗ y) ≤ var(x)∥y∥∞, x, y ∈ NBV, (2.6)
var(x ∗ f) ≤ var(x)∥f∥L1 , x ∈ NBV, f ∈ L1, (2.7)

∥x∥L1 ≤ ∥x∥∞ ≤ var(x), x ∈ ÑBV. (2.8)

Further, using the function

E1(t) =

{
T − t for t ∈ (0, 2T ),

0 for t = 0,

which fulfils
var(E1) = 4T, ∥E1∥∞ = T, (2.9)

we introduce antiderivative operators I and I2 by

Iu := E1 ∗ u ∈ ÃC, I2u := I(Iu) ∈ ÃC, u ∈ L1. (2.10)

For τ ∈ R we define a distribution ετ by the Fourirer series

ετ :=
∑
n∈Z

(
1− (−1)n

)
e

inπ
T

(t−τ), t ∈ R. (2.11)

Then it holds
Iετ ∈ ÑBV, I2ετ ∈ ÃC, ∥Iετ∥∞ = T. (2.12)

See [3] for more details. Using this we investigated in [3] the van del Pol equation

x′(t) = y(t), y′(t) = µ
(
x(t)− x3(t)

3

)′
− x(t) + f(t) for a.e. t ∈ R, (2.13)

with a positive parameter µ, a Lebesgue integrable T -antiperiodic function f , and with the state-
dependent impulse conditions

lim
t→τi(x)+

y(t)− lim
t→τi(x)−

y(t) = Ji(x), i = 1, . . . ,m, (2.14)

where Ji and also τi, i = 1, . . . ,m, are given continuous and bounded real-valued functionals on
ÑBV. For such setting we proved the existence result contained in Theorem 2.2.
Theorem 2.2 ([3, Theorem 1.1]). Assume that T ∈ (0,

√
3), and the functionals τ1, . . . , τm have

values in (0, T ). Further, let

i ̸= j =⇒ τi(x) ̸= τj(x), x ∈ ÃC, i, j = 1, . . . ,m. (2.15)

Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] the problem (2.13), (2.14) has a T -antiperiodic
solution (x, y).
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3 Existence of continuous functionals
If we study problem (1.1)–(1.3) which is formulated by means of barriers, then a number of impulse
points for some solution (x, y) of (1.1) is equal to a number of values of t satisfying the equations
t− γi(x(t)) = 0, i = 1, . . . ,m. In general, for any (x, y) satisfying (1.1), such equations need not be
solvable, or they can have finite or infinite number of roots. In Theorem 2.1, we present conditions
imposed on barriers which yield unique solvability of these equations provided x belongs to some
suitable set ΩKL (see (3.1)). This yields functionals continuous on ΩKL. We prove it in the next
lemmas.

In particular, for positive numbers K and L, define a set ΩKL

ΩKL :=
{
x ∈ ÃC : var(x) ≤ K, |x′(t)| ≤ L for a.e. t ∈ [0, 2T ], x is T -antiperiodic

}
. (3.1)

Lemma 3.1. The set ΩKL is nonempty, bounded, convex and closed in ÑBV.

Lemma 3.2. Let K,L ∈ (0,∞). Assume that there exist a, b ∈ (0, T ) and Li ∈ (0, 1/L), i =
1, . . . ,m, such that (2.1) and (2.2) are fulfilled. Then for each x ∈ ΩKL and i ∈ {1, . . . ,m} the
equation

t = γi(x(t)) (3.2)

has a unique solution tix ∈ [a, b].

Lemma 3.3. Let the assumptions of Lemma 3.2 be fulfilled. Then for i ∈ {1, . . . ,m}, the functional

τi : ΩKL → [a, b], τi(x) = tix, (3.3)

where tix is a solution of (3.2), is continuous.

Having continuous functionals τ1, . . . , τm from Lemma 3.3, we can argue similarly as in [3] in
the proof of Theorem 2.2 and prove Theorem 2.1.
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