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Introduction and setting of the problem
The qualitative theory of differential equations with impulsive perturbations is outlined in [1,10,14],
and for impulsive dynamical systems in [3,5,9,11,12]. In the case of an infinite dimensional phase
space, the qualitative behavior of dissipative systems is studied in the framework of the theory
of global attractors [15]. The generalization of the basic concepts and results of the theory of
attractors to infinite-dimensional impulsive dynamical systems was carried out in [4, 7, 13]. The
main object of research is the minimal compact uniformly attracting set – uniform attractor. The
questions of existence, structure and invariance of uniform attractors for different classes of infinitely
dimensional impulsive systems are dealt with in [4,6,7]. In [8], authors proposed the conditions for
impulsive semiflows, which guarantee the stability of the non-impulsive part of uniform attractors.
In the present paper, we refine these conditions and apply them to the study of the stability
of uniform attractors of a weakly-nonlinear N -dimensional impulsive-perturbed parabolic system.
More precisely, in bounded domain Ω ⊂ Rn, n ≥ 1 we consider the following N-dimensional weakly
nonlinear parabolic system 

∂u1
∂t

= a1∆u1 − εf1(u1, . . . , uN ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂uN
∂t

= aN∆uN − εfN (u1, . . . , uN ),

u1
∣∣
∂Ω

= · · · = uN
∣∣
∂Ω

= 0,

(1)

where ε > 0 is a small parameter, ai > 0, f = (f1, . . . , fN )T is a nonlinear vector-function,
f ∈ C1(R2) satisfies

∃C > 0, ∀u ∈ RN , ∀ i = 1, N |fi(u)| ≤ C, f ′(u) ≥ −C. (2)

These assumptions guarantee global existence and uniqueness of a weak solution of the problem (1)

for every initial data from the phase space X = (L2(Ω))N having the norm ∥u∥X =

√
N∑
i=1

∥ui∥2 .

(Here ∥ · ∥ and ( · , · ) mean a norm and a scalar product in L2(Ω).)
For fixed positive numbers α1, . . . , αN , µ and for the function ψ ∈ L2(Ω) the following impulsive

problem is considered: the phase point u(t), when it encounters the impulse set

M =
{
u ∈ X |

N∑
i=1

αi(ui, ψ)
2 = 1

}
, (3)
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is transferred to a new position Iu ∈M
′ using impulsive map I :M →M ′, where

M ′ =
{
u ∈ X |

N∑
i=1

αi(ui, ψ)
2 = 1 + µ

}
. (4)

It is proved in the paper that, for a sufficiently wide class of impulsive mappings I : M → M ′,
the impulsive-perturbed problem (1)–(4) generates an impulse semiflow for sufficiently small ε
generates a pulsed semiflow Gε, which has a uniform attractor Θε having an invariant and stable
non-impulsive part, provided that the impulsive mapping I :M →M ′ is continuous.

Existence and stability of the uniform attractor of impulsive systems
Let a continuous semigroup V : R+×X → X, the impulsive set M ⊂ X, and the impulsive mapping
I : M → X be given in the phase space (X, ∥ · ∥X). The impulsive semiflow G : R+ ×X → X is
constructed according to the following rule: [9]: if V (t, x) ̸∈ M for x ∈ X and for all t > 0, then
G(t, x) = V (t, x); otherwise

G(t, x) =

{
V (t− Tn, x

+
n ), t ∈ [Tn, Tn+1),

x+n+1, t = Tn+1,
(5)

where T0 = 0, Tn+1 =
n∑

k=0

sk, x+n+1 = IV (sn, x
+
n ), x+0 = x, sn are the intervals between moments of

impulsive perturbations characterized by the condition V (sn, x
+
n ) ∈M .

Under conditions
M– closed, M ∩ IM = ∅,

∀x ∈M, ∃ τ = τ(x) > 0, ∀ t ∈ (0, τ) V (t, x) ̸∈M,

∀x ∈ X t→ G(t, x) defined on [0,+∞)

(6)

the formula (5) determines a semigroup G : R+ × X → X [3, 7], which we will call an impulsive
semiflow.
Remark 1. It follows from conditions (6) and the continuity of the V [3, 6] that for an arbitrary
x ∈ X or there exists a moment of the time s := s(x) > 0 such that ∀ t ∈ (0, s) V (t, x) ̸∈ M ,
V (s, x) ∈M , or ∀ t > 0 V (t, x) ∩M = ∅ (and in this case we put s(x) = ∞).
Definition ([7]). A compact Θ ⊂ X will be called a uniform attractor of the impulsive semiflow
G if Θ is a uniformly attracting set, i.e., for any bounded B ⊂ X

dist(G(t, B),Θ) −→ 0, t→ ∞,

and Θ is minimal among all closed uniformly attracting sets.
Remark 2. A uniform attractor may not be invariant with respect to G [7].
Lemma 1. Suppose that a continuous semigroup V : R+ ×X → X and a map I :M → X satisfy
the following conditions: there is a compactly embedded space Y b X such that

∃C1 > 0, ∃ δ > 0, ∀ t ≥ 0, ∀x ∈ X ∥V (t, x)∥X ≤ ∥x∥Xe−δt + C1,

∀ t > 0, ∀ r > 0, ∃C(t, r) > 0, ∀x ∥x∥X ≤ r, ∥V (t, x)∥Y ≤ C(t, r),

∃C2 > 0, ∀x ∈ X ∩M ∥Ix∥X ≤ ∥x∥X + C2,

∀ r > 0, ∃C(r) > 0, ∀x ∈ Y ∩M ∥x∥Y ≤ r, ∥Ix∥Y ≤ C(r),

∃ s > 0, ∀x ∈ IM s(x) ≥ s.

Then the impulsive semiflow G has an uniform attractor Θ.
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It is known [2,5] that one of the equivalent definitions of stability of a compact invariant set A
with respect to a continuous semiflow is equality

A = D+(A) :=
∪
x∈A

{
y | y = limG(tn, xn), xn → x, tn ≥ 0

}
. (7)

It was shown in [8] that a uniform attractor of an impulsive semiflow may not satisfy (7), al-
though under additional assumptions regarding the nature of the behavior of the trajectories in the
neighborhood of the impulsive set, we can obtain the following result.

Lemma 2 ( [8]). Let impulsive semiflow G has a uniform attractor Θ. Let impulsive mapping
I :M → X be continuous, and the following conditions are satisfied:

- for any sequence xn → x ∈ Θ \M{
s(x) = ∞, if s(xn) = ∞ for infinitely many n,
s(xn) → s(x), otherwise;

- for any sequence xn → x ∈ Θ ∩M

either s(xn) = ∞ for infinitely many n, or s(xn) → 0.

Then Θ \M is invariant with respect to semiflow G and

Θ = Θ \M, D+(Θ \M) ⊂ Θ \M. (8)

Application to impulsive-perturbed parabolic problem
To apply Lemmas 1, 2 to impulsive problems (1)–(4), we specify the perturbation parameters. Let
{λk}∞k=1, {ψk}∞k=1 be solutions to the spectral problem ∆ψ = −λψ, ψ ∈ H1

0 (Ω). Assume that in
the definition of sets M , M ′ we have ψ = ψ1, λ = λ1. Then it is natural to consider the following
class of impulsive mappings I :M 7→M ′:

for u =

 c1
...
cN

ψ1 +
∞∑
k=2

 ck1
...
ckN

ψk ∈M we have I(u) =

d1
...
dN

ψ1 +
∞∑
k=2

 ck1
...
ckN

ψk.

The simplest example: ∀ i = 1, N di =
√
1 + µ ci.

The main result of this paper is the following theorem.

Theorem. Let conditions (2) be satisfied. Then for sufficiently small ε > 0, the problem (1)–(4)
in the phase space X = (L2(Ω))N generates an impulsive semiflow having a uniform attractor Θε.
If, in addition, the map I : M 7→ M ′ is continuous, then Θε has invariant non-impulsive part and
satisfies the stability properties (8).
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