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1 Introduction
Here we follow the previous works [2–4] and consider the linear continuous-discrete functional
differential system

δy = T y + r, (1.1)

where y = col(x, z), r = col(f, g), x : [0, T ] → Rn, z : {0, t1, . . . , tµ} → Rν , δy = col(ẋ, z), T =(
T11 T12
T21 T22

)
, and T11 : ACn → Ln, T12 : FDν → Ln, T21 : ACn → FDν , T22 : FDν → FDν are

linear Volterra operators. Here Ln is the space of summable functions f : [0, T ] → Rn, ACn is the
space of absolutely continuous functions x : [0, T ] → Rn, the space FDν is defined by the given set
J = {0, t1, . . . , tµ}, 0 = t0 < t1 < · · · < tµ = T, as the space of functions z : J → Rν . The spaces
Ln, ACn and FDν are assumed to be equipped with natural norms.

It should be noted that the system (1.1) can be considered as a concrete realization of the so-
called Abstract Functional Differential Equation, the theory of which is thoroughly treated in [1].
The systems of the kind (1.1) arise in particular as dynamic models in Mathematical Economics
and cover many kinds of systems with aftereffect. Representation of solutions to some classes of
dynamic models close to (1.1) and discussion of actual applied problems can be found in [10].
The questions of stability to functional differential systems with continuous and discrete times are
studied in [13].

The central point of the consideration is the representation of solutions to (1.1). The structure
and some principal properties of the Cauchy operator are described in [8] with the use of the general
representation to the operators Tij , i, j = 1, 2. The main aim of this paper is to give an explicit
representation for the components of the Cauchy operator in a special case.

2 The Cauchy operator

Let V be the integration operator: (V u)(t)=
t∫
0

u(s) ds, and K = T11V be an integral operator with

the kernel K(t, s) = (kij(t, s)) that satisfies the condition K: for all the elements kij , there exists a
common summable majorant κ(·), |kij(t, s)| ≤ κ(t), t ∈ [0, T ].

Let us recall some general results [2] for the case that the condition K is fulfilled.
The general solution of (1.1) has the representation(

x
z

)
= X

(
x(0)
z(0)

)
+ C

(
ccf
g

)
,
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where X =

(
X11 X12

X21 X22

)
is the fundamental operator (fundamental matrix), C =

(
C11 C12
C21 C22

)
is the

Cauchy operator.
Denote by C1 and X(t) the Cauchy operator and the fundamental matrix to the equations

ẋ = T11x, and denote by C2 and Z(ti) the Cauchy operator and the fundamental matrix to the
equation z = T22z.

Define the operators Hij , i, j = 1, 2 by the equalities

H11 = (I − C1T12C2T21)−1, H12 = −(I − C1T12C2T12)−1C1T21,
H21 = C2T21(I − C1T12C2T21)−1, H22 = (I − C2T21C1T12)−1,

where I is the identity operator.

Theorem 2.1 ([9]). The Cauchy operator C = (Cij) of (1.1) is defined by the equalities

Cij = HijCj , i, j = 1, 2.

It should be noted that C2 can be constructed in the explicit form. From Theorem 2.1 it follows
that the component C1 is of principal interest and requires the development of efficient algorithms
to approximate construction of it. Some of those are described in [7].

In what follows we shall construct the Cauchy operator for the following continuous-discrete
functional differential system

ẋ(t) =
∑
i: ti<t

Ai(t)x(ti) +
∑
i: ti<t

Bi(t)z(ti) + f(t), t ∈ [0, T ], (2.1)

z(ti) =
∑
j<i

Djx(tj) +
∑
j<i

Hjz(tj) + g(ti), i = 1, . . . , µ (2.2)

with summable (n × n)-matrices Ai(t), (n × ν)-matrices Bi(t) and constant (ν × n)-matrices Dj ,
(ν × ν)-matrices Hj .

Let us define the operator Θ : ACn → Ln by the equality

(Θx)(t) =
∑
i: ti<t

Ai(t)x(ti) +
∑
i: ti<t

Bi(t)
[ i∑
j=1

C2(i, j)
∑
k<j

Dk x(tk)
]
.

After some transformations this operator can be represented in the form

(Θx)(t) =
∑
i: ti<t

Ai(t)x(ti), (2.3)

where the matrices Ai(t) are calculated by Ai(t), Bi(t), C2(i, j), Di.
Denote by C(t, s) the Cauchy matrix [5] to the equation ẋ = Θx.
As is shown in [7, Theorem 1, Remark 2], C(t, s) can be constructed explicitly. Let us recall

the main relationships from [7]. Let ηi(t), i = 1, . . . . , µ−1, be the characteristic function of the set
[ti−1, ti), and ηµ(t) denotes the characteristic function of the segment [tµ−1, tµ]. Define the kernel

of the integral operator (Kz)(t) =
t∫
0

K(t, s)z(s) ds by the equality

K(t, s) =

µ∑
i=1

i∑
j=1

ηi(t)Pi(t)Qij(s)ηj(s), (2.4)
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where Pi(t) and Qij(s) are (n × n)-matrices, P1(t) = 0, Qij(s) = 0, j ≥ i, elements of Pi are
summable on [0, T ], elements of Qij are measurable and essentially bounded on [0, T ]. Next define
the matrices Bki by the equalities

Bki =

T∫
0

k∑
j=1

Qkj(t)ηj(t)ηi(t)Pi(t) dt.

Notice that by definition the block matrix G = {Gki}k,i=1,...,µ, Gkk = En, k = 1, . . . , µ, where En is
the identity (n×n)-matrix, Gki = −Bki, is a lower triangle matrix with En as the diagonal blocks.
Finally denote by Fki the block elements of the inverse G−1. By Theorem 1 of [7] we have the
explicit representation of the resolvent kernel R(t, s) for the kernel K(t, s) defined by (2.4):

R(t, s) =

µ∑
i=1

µ∑
k=1

k∑
j=1

ηi(t)Pi(t)FikQkj(s)ηj(s),

and

C(t, s) = En +

t∫
s

R(τ, s) dτ.

It remains to note that, for the operator Θ (2.3), we have

(ΘV u)(t) =

t∫
0

∑
i: ti<t

Ai(t)ηi(s)u(s) ds,

and this is the integral operator with the kernel of the kind (2.4). Now we are ready to give the
representations of the fundamental matrix X and the Cauchy operator C for the system (2.1), (2.2)
in terms of X(t), Z(ti), C(t, s) and C2(i, j).

Theorem 2.2. The representation of the components to the fundamental matrix and the Cauchy
operator of (2.1), (2.2) is defined by the equalities

X11(t) = X(t), X12(t) =

t∫
0

C(t, s)
[ ∑
i: ti<t

Bi(t)Z(ti)
]
ds,

X21(ti) =

i∑
j=1

C2(i, j)
[∑
k<j

DkX11(tk)
]
, X22(ti) = Z(ti) +

i∑
j=1

C2(i, j)
[∑
k<j

DkX11(tk)
]
,

(C11f)(t) =
t∫

0

C(t, s)f(s) ds, (C12g)(t) =
t∫

0

C(t, s)
∑

i: ti<s

Bi(s)
[ i∑
j=1

C2(i, j)g(tj)
]
ds,

(C21f)(ti) =
i∑

j=1

C2(i, j)
[∑
k<j

Dk(C11f)(tk)
]
, (C22g)(ti) =

i∑
j=1

C2(i, j)
[∑
k<j

Dk(C12g)(tk) + g(tj)
]
.

The systems (2.1), (2.2) are actively studied as models of some dynamic economic processes [12].
Furthermore, they can be used as approximations of more general systems (1.1) which opens the
way to obtaining external estimates of attainability sets for control problems [6, 11].
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