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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with piecewise continuous and bounded coefficient matrix A such that ∥A(t)∥ ≤ M < +∞ for all
t ≥ 0. We denote the Cauchy matrix of (1) by XA and the highest Lyapunov exponent of (1) by
λn(A). Together with system (1) consider the perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (2)

with piecewise continuous and bounded perturbation matrix Q such that

∥Q(t)∥ ≤ NQ exp(−σt), t ≥ 0. (3)

Denote the higher exponent of (2) by λn(A+Q).
Let Mσ(A) be the set of all perturbations Q satisfying condition (3) and having the appropriate

dimensions. Any Q ∈ Mσ is said to be a sigma-perturbation and the number ∇σ(A) := sup{λn(A+
Q) : Q ∈ Mσ(A)} is called [7], [10, p. 225], [9, p. 214] the highest sigma-exponent or the Izobov
exponent of system (1). It was proved in [7] that the Izobov exponent can be evaluated by means
of the following algorithm:

∇σ(A) = lim
m→∞

ξm(σ)

m
, (4)

ξm(σ) = max
k<m

(
ln ∥XA(m, k)∥+ ξk(σ)− σk

)
, ξ1 = 0, k ∈ N.

According to [1,11], there exists a unique critical value σ0(A) ≥ 0 such that ∇σ(A) = λn(A) for
all σ ≥ σ0(A) and ∇σ(A) > λn(A) when 0 < σ < σ0(A). It is well known that ∇σ(A) = λn(A) for
all σ > 2M and, therefore, σ0(A) ≤ 2M . Using the Lyapunov σL(A), Grobman σG(A) or Perron
σP(A) irregularity coefficients [4, pp. 67, 73], [8, pp. 77, 81] one can obtain some more accurate
estimates for σ0(A). Indeed, the inequalities σ0(A) ≤ σL(A) and σ0(A) ≤ σG(A) were proved in [3]
and [5]. It was also proved that the inequality σ0(A) ≤ σP(A) holds for n = 2, see [6], and is not
valid for n > 2, see [12, 15]. These relations are combined in [15], where the irregularity quantity
σλ(A) is constructed in such a way that σG(A) ≥ σλ(A) ≥ σ0(A) for all n ∈ N and σλ(A) = σP(A)
for n = 2.

In [13] we give an explicit formula for evaluation of σ0(A) from the Cauchy matrix XA of the
original system. To formulate this result we need some notation.

Let D(m) be the set of all nonempty d ⊂ {1, . . . ,m − 1} ⊂ N. Further we assume that for
each d ∈ D(m) the elements of d are arranged in the increasing order, so that d1 < d2 < · · · < ds
and d = {d1, d2, . . . , ds}, where s = |d| is the number of elements of the set d. We also put
∥d∥ := d1 + · · ·+ ds for d ∈ D(m) and ∥d∥ := 0 for d = ∅. In addition, for the sake of convenience
we assume that d0 = 0 and ds+1 = m for each d ∈ D0(m) := D(m) ∪ {∅}. Note that we do not
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include these additional elements in the set d. Under the above assumptions, let us define the
quantity Ξ(m, d) as

Ξ(m, d) :=
s∑

i=0

ln ∥XA(di+1, di)∥,

where m ∈ N, d ∈ D(m) and s := |d|. From [2,14] we can assert that

ξm(σ) = max
d∈D0(m)

(
Ξ(m, d)− σ∥d∥

)
. (5)

Theorem 1 ([13]). The equality

σ0(A) = lim
m→∞

max
d∈D(m)

∥d∥−1(Ξ(m, d)−mλn(A)) (6)

holds.

Theorem 2 ([13]). The estimate

σ0(A) ≥ σ+ := lim
m→∞

max
k<m

k−1
(
ln ∥XA(m, k)∥+ ln ∥XA(k, 0)∥ −mλn(A)

)
(7)

is valid. If the limit lim
m→∞

m−1 ln ∥XA(m, 0)∥ exists, then σ0(A) = σ+.

These theorems are obtained by direct inversion of (4) and (5) using some standard tools of
convex analysis.

Since σ0(A) is said to be a critical value, we can say that all sigma-perturbations with σ > σ0(A)
are supercritical. In order to investigate some fine properties of such perturbations we should modify
the above expressions. It seems to be a natural idea to replace mλn(A) by ln ∥XA(m, 0)∥ in (6) or
(7). In this way we put

σ#(A) = lim
m→∞

max
d∈D(m)

∥d∥−1
(
Ξ(m, d)− ln ∥XA(m, 0)∥

)
.

Evidently, σ#(A) ≥ σ0(A).
Let XA+Q be the Cauchy matrix of system (2). Using the estimates for the norm of XA+Q

obtained in [14] we can prove the following statement.

Theorem 3. If σ > σ#(A), then ∥XA+Q(t, 0)∥ ≤ K∥XA(t, 0)∥ with some K > 0 for all t > 0. If
σ < σ#(A), then ∥XA+Q(t, 0)∥∥XA(t, 0)∥−1 is unbounded as t → +∞.

It should be noted that to reveal the meaning of

σ∆ := lim
m→∞

max
k<m

k−1
(
ln ∥XA(m, k)∥+ ln ∥XA(k, 0)∥ − ln ∥XA(m, 0)∥

)
still remains an open problem.
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