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In this contribution, based on the very recent paper [21], we analyze the quasilinear indefinite
Neumann problem 

−
( u′√

1 + (u′)2

)′
= λa(x)f(u) in (0, 1),

u′(0) = u′(1) = 0.

(1)

Here, λ ∈ R is regarded as a parameter and

(a1) the function a ∈ L∞(0, 1) satisfies, for some z ∈ (0, 1), a(x) > 0 a.e. in (0, z) and a(x) < 0

a.e. in (z, 1), as well as
1∫
0

a(x) dx < 0;

(f1) the function f ∈ C(R) ∩ C1[0,+∞) satisfies f(s) > 0 and f ′(s) ≥ 0 for all s > 0, and there
exist four constants, h > 0, k > 0, q > 1 and p ≥ 2, such that

lim
s→+∞

f(s)

sq−1
= qh, lim

s→0+

f(s)

sp−1
= pk.

Condition (f1) implies that the potential F of f , defined by F (s) =
s∫
0

f(t) dt, satisfies

lim
s→+∞

F (s)

sq
= h, lim

s→0+

F (s)

sp
= k

and, thus, F must be superlinear at +∞ and either quadratic or superquadratic at 0. We also
introduce the following condition on the weight function a at the nodal point z, which is going to
play a pivotal role in the mathematical analysis carried out in [21]

(a2)
( z∫

x

a(t) dt

)− 1
2

∈ L1(0, z) and
( z∫

x

a(t) dt

)− 1
2

∈ L1(z, 1).

We use the following notions of a solution.

• A couple (λ, u) is said to be a regular solution of (1) if u ∈ W 2,1(0, 1) and it satisfies the
differential equation a.e. in (0, 1), as well as the boundary conditions.
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• A couple (λ, u) is said to be a bounded variation solution of (1) if u ∈ BV (0, 1) and it satisfies

1∫
0

DauDaϕ√
1 + |Dau|2

dx+

1∫
0

Dsu

|Dsu|
Dsϕ =

1∫
0

λaf(u)ϕdx

for all ϕ ∈ BV (0, 1) such that |Dsϕ| is absolutely continuous with respect to |Dsu| (cf. [2]).

• A couple (λ, u) is said to be a singular solution of (1) whenever it is a non-regular bounded
variation solution; that is, u ∈ BV (0, 1) \W 2,1(0, 1).

• When the couple (λ, u) solves (1) in any of the previous senses, it is said that (λ, u) is a
positive solution if, in addition,

λ > 0, ess inf u > 0.

As usual, for any function v ∈ BV (0, 1),

Dv = Dav dx+Dsv

stands for the Lebesgue decomposition of the Radon measure Dv and Dsv
|Dsv| denotes the density

function of the measure Dsv with respect to its total variation |Dsv| (see [1]). By [23, Prop. 3.6],
any positive singular solution, (λ, u), of (1) actually satisfies

u
∣∣
[0,z)

∈ W 2,1
loc [0, z) ∩W 1,1(0, z) and is concave,

u
∣∣
(z,1]

∈ W 2,1
loc (z, 1] ∩W 1,1(z, 1) and is convex;

(2)

moreover, u′(x) < 0 for every x ∈ (0, 1) \ {z}, u′(0) = u′(1) = 0 and

u′(z−) = u′(z+) = −∞,

where u′(z−) and u′(z+) are the left and the right Dini derivatives of u at z. The same argument
used in [23, Lem. 2.1] shows that λ > 0 is necessary for the existence of positive non-constant,
either regular or singular, solutions.

Problem (1) is a one-dimensional prototype model of
−div

( ∇u√
1 + |∇u|2

)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

(3)

where Ω is a bounded regular domain in RN , with outward pointing normal ν, and g : Ω×R → R and
σ : ∂Ω → R are given functions. Problem (3) plays a central role in the mathematical analysis of a
number of geometrical and physical issues, such as prescribed mean curvature problems for cartesian
surfaces in the Euclidean space [3, 9, 12–15, 19, 25, 26], capillarity phenomena for incompressible
fluids [6, 10, 11, 16, 17], and reaction-diffusion processes where the flux features saturation at high
regimes [5, 18,24].

The model (1) has been recently investigated by the authors in [22, 23] and [20]. In [22] the
existence of bounded variation solutions was analyzed by using variational methods and in [23]
the existence of regular solutions was dealt with by means of classical phase plane and bifurcation
techniques. The main result of [20] established the existence of a component of bounded variation
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solutions bifurcating from the trivial state (λ, 0) in the special, but significant, case where p = 2.
According to the results of these papers, it is already known that, under conditions (a1) and (f1),
problem (1) cannot admit positive solutions if λ < 0 and that it possesses at least one positive
bounded variation solution for sufficiently small λ > 0.

Quite strikingly, whether or not these bounded variation solutions are singular depends on
whether or not condition (a2) holds true: this is the main result of [21] which can be stated as
follows.

Theorem 1. Assume (a1) and (f1). Then, the following conclusions hold for sufficiently small
λ > 0:

(i) any positive solution of (1) is singular if (a2) holds;

(ii) any positive solution of (1) is regular if (a2) fails.

In other words, condition (a2) completely characterizes, under (a1) and (f1), the development
of singularities by the positive solutions of (1) for sufficiently small λ > 0.

By having a glance at condition (a2) it becomes apparent that it fails whenever the function a
is differentiable at the nodal point z, whereas a very simple example where (a2) holds occurs when
the function a is discontinuous at z, like, for instance, in the special case when a is assumed to
be a positive constant, A > 0, in [z − η1, z) and a negative constant, −B < 0, in (z, z + η2], for
some η1, η2 > 0. The huge contrast on the nature of the positive solutions of the problem with
respect to the integrability properties of the function a near the node z can also be realized by
considering any weight function a satisfying the requirements of (a1) except for the fact that a = 0
in [z − η, z + η] for some η > 0. In such case, thanks to the convexity and concavity properties of
the positive bounded variation solutions of (1) guaranteed by [23, Prop. 3.6], any positive solution
u must be linear in the interval [z− η, z+ η] and hence, due to (2), it cannot develop singularities.

As a consequence of Theorem 1, when p = 2, the global structure of the component of the
positive solutions of (1), C+, whose existence is guaranteed by the main theorem of [20], drastically
changes according to whether or not the condition (a2) holds as illustrated in Figure 1, where λ0

stands for the principal positive eigenvalue of the linear weighted problem−φ′′ = λa(x)φ in (0, 1),

φ′(0) = φ′(0) = 0.

The non-existence of positive regular solutions of (1) in the very special cases when p = 2 and
the weight a is constant in [0, z) and in (z, 1] has been recently established in Section 8 of [23]
by using some classical, but sophisticated, phase portrait techniques. This induced the authors to
presume that an analogous non-existence result should also be valid for general weight functions a,
without imposing the integrability condition (a2). So, they formulated [23, Th. 7.1]. Theorem 1 in
particular shows that [23, Th. 7.1] has to be complemented with condition (a2).

Similarly as for p = 2, also in the case p > 2 the global structure of the set of positive solutions
of (1), C+, whose existence is now guaranteed by [22, Th. 1.1] and [23, Th. 10.1], changes for
sufficiently small λ > 0 according to whether or not condition (a2) holds, as illustrated by Figure 2.

Our proof of Theorem 1 is based upon the characterization of the exact limiting profiles of the
positive solutions of (1), both regular and singular, as the parameter λ approximates zero. These
profiles are provided by the next theorem, regardless their particular nature.
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Figure 1. Global components emanating from the positive principal eigenvalue λ0

in case p = 2 when (a2) holds (on the left), or (a2) fails (on the right).

Theorem 2. Assume (a1) and (f1), and let ((λn, un))n be an arbitrary sequence of positive solutions
of (1) with lim

n→∞
λn = 0. Then, for sufficiently small η > 0, the following assertions hold:

lim
n→+∞

un(x)

un(0)
= 1 uniformly in x ∈ [0, z − η],

lim
n→+∞

un(x)

un(0)
=

( z∫
0

a(t) dt

−
1∫
z
a(t) dt

) 1
q−1

uniformly in x ∈ [z + η, 1],

lim
n→+∞

(λnf(un(x))) =
1

z∫
0

a(t) dt

uniformly in x ∈ [0, z − η],

lim
n→+∞

(λnf(un(x))) =
1

−
1∫
z
a(t) dt

uniformly in x ∈ [z + η, 1],

lim
n→+∞

u′n(x) =

−
x∫
0

a(t) dt√( z∫
0

a(t) dt
)2

−
( x∫

0

a(t) dt
)2 uniformly in x ∈ [0, z − η],

and

lim
n→+∞

u′n(x) =

1∫
x
a(t) dt√( 1∫

z
a(t) dt

)2
−
( 1∫

x
a(t) dt

)2 uniformly in x ∈ [z + η, 1].

Note that condition (a2) is equivalent to requiring the integrability in both intervals, (0, z) and
(z, 1), of the asymptotic profile of the derivatives of the positive solutions of (1) as λ → 0+, which
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Figure 2. Global bifurcation diagrams in case p > 2 when (a2) holds (on the left),
or (a2) fails (on the right).

is equivalent to impose that the “limiting derivative”

u′ω(x) =



−
x∫
0

a(t) dt√( z∫
0

a(t) dt
)2

−
( x∫

0

a(t) dt
)2 for x ∈ [0, z),

1∫
x
a(t) dt√( 1∫

z
a(t) dt

)2
−
( 1∫

x
a(t) dt

)2 for x ∈ (z, 1],

belongs to both L1(0, z) and L1(z, 1).
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