
112 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

On the Behavior of Solutions with Positive Initial Data
to Third Order Differential Equations

with General Power-Law Nonlinearities

T. Korchemkina
Lomonosov Moscow State University, Moscow, Russia

E-mail: krtaalex@gmail.com

1 Introduction
y′′′ = p(x, y, y′, y′′)|y|k0 |y′|k1 |y′′|k2 sgn(yy′y′′), k0, k1, k2 > 0, (1.1)

with positive continuous and Lipschitz continuous in u, v, w function p(x, u, v, w) satisfying in-
equalities

0 < m ≤ p(x, u, v, w) ≤ M < +∞. (1.2)

Equation (1.1) in the case k0 > 0, k0 ̸= 1, k1 = k2 = 0, was studied by I. Astashova in [1,
Chapters 6–8]. In particular, asymptotic classification of solutions to such equations was given
in [4, 6], and proved in [3].

For higher order differential equations, nonlinear with respect to derivatives of solutions, the
asymptotic behavior of certain types of solutions was studied by V. M. Evtukhov, A. M. Klopot
in [7, 8]. Another approach to study asymptotic properties of solutions to higher order equations
was offered by I. T. Kiguradze and T. A. Chanturia in [9].

Using methods described in [1, 2, 5] by I. V. Astashova, the behavior of solutions to (1.1) near
domain boundaries is considered with respect to the values k0, k1 and k2.

2 Main results
Consider positive increasing convex solutions to equation (1.1).

Theorem 2.1. Suppose the function p(x, u, v, w) is continuous, Lipschitz continuous in u, v, w,
and satisfies inequalities (1.2), and let y(x) be a positive increasing convex on (x1, x2) solution to
equation (1.1). Then for k2 ̸= 2 the following estimates hold:

m(y(x1))
k0 (y′(x))k1+1

k1 + 1

∣∣∣∣x2

x1

≤ (y′′(x))2−k2
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≤ M(y(x2))
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x1

, (2.1)

and for k2 ̸= 1 the following estimates hold:
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k1−1 (y(x))
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. (2.2)

Proof. Let us prove inequalities (2.1). Since y(x) is positive, increasing and convex, for x ∈ [x1, x2]
we have

m(y(x1))
k0(y′(x))k1(y′′(x))k2 ≤ y′′′ ≤ M(y(x2))

k0(y′(x))k1(y′′(x))k2 ,
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hence
m(y(x1))

k0(y′(x))k1y′′ ≤ y′′′(y′′(x))1−k2 ≤ M(y(x2))
k0(y′(x))k1y′′.

Let us integrate the above inequality on [x1, x2]:
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x2∫
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so
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,

and thus, estimates (2.1) are obtained.
Now let us prove inequalities (2.2). Due to equation (1.1) and that fact that the function

p(x, u, v, w) is bounded, for any x ∈ [x1, x2] it holds that

m(y′(x1))
k1−1(y(x))k0y′(x)(y′′(x))k2 ≤ y′′′ ≤ M(y′(x2))

k1−1(y(x))k0y′(x)(y′′(x))k2 ,

and therefore

m(y′(x1))
k1−1(y(x))k0y′(x) ≤ y′′′(y′′(x))−k2 ≤ M(y′(x2))

k1−1(y(x))k0y′(x).

By integrating these inequalities on [x1, x2], we obtain
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which implies
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and estimates (2.2) are also proved.

Theorem 2.2. Suppose the function p(x, u, v, w) is continuous, Lipschitz continuous in u, v, w,
and satisfies inequalities (1.2). Then the second derivative of any maximally extended solution y(x)
to equation (1.1), satisfying the conditions y(x0) = y0 > 0, y′(x0) = y1 > 0, y′′(x0) = y2 > 0 at
some point x0, tends to +∞ as x → x̃, where x̃ is the right domain boundary of solution y(x),
x0 < x̃ ≤ +∞.

Proof. Since initial data are positive and p(x, u, v, w) > m, we obtain y′′′(x) ≥ myk00 yk11 yk22 for
x ≥ x0.

Denote C0 = myk00 yk11 yk22 , then y′′′ ≥ C0, and by consequently integrating obtained inequalities
on [x0, x] we derive

y′′(x) > C0(x− x0), y′(x) >
C0

2
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6
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3.

Then from equation (1.1) it follows that
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)k0(C0

2
(x− x0)
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that is,
y′′(x) > C̃0(x− x0)

3k0+2k1+k2+1,

where C̃0 > 0 is a constant. Thus, y′′(x) → +∞ as x → +∞, and the theorem is proved for
x̃ = +∞.

Consider now the case x̃ < +∞. If for a constant D > 0 inequality y′′(x) ≤ D holds for
x ∈ (x0, x̃), then

y′(x) ≤ D(x− x0) + y′(x0) ≤ D(x̃− x0) + y′(x0) = D1 < +∞,

y(x) ≤ D1(x− x0) + y(x0) ≤ D1(x̃− x0) + y′(x0) = D2 < +∞,

so y′′′(x) ≤ MDk0
2 Dk1

1 Dk2 < +∞, and, since the solution and all its derivatives up to the third
are increasing and bounded on a finite interval, there exist finite limits of the solution and its
derivatives as x → x̃. Then the solution y(x) can be extended to the right of x̃, and we obtain a
contradiction.

Thus, y′′(x) → +∞ as x → x̃, and the theorem is proved.

Theorem 2.3. Suppose k0 + k1 + k2 > 1, and the function p(x, u, v, w) is continuous, Lipschitz
continuous in u, v, w, and satisfies inequalities (1.2). Then for any maximally extended solution
y(x) to equation (1.1), satisfying the conditions y(x0) ≥ 0, y′(x0) ≥ 0, y′′(x0) = y2 > 0 at some
point x0, its right domain boundary x̃ is finite and satisfies the estimate

x̃− x0 < ξy
− k0+k1+k2−1

2k0+k1+1

2 ,

with ξ =
( (2k0+k1+1)2k0

m

) 1
2k0+k1+1 (1− 2

− k0+k1+k2−1
2k0+k1+1 )−1.

Proof. As it was shown above, the second derivative of such solution is infinitely increasing as
argument tends to the right domain boundary. Consider the sequence of points xi, i = 0, 1, . . . ,
such that y′′(xi) = 2y′′(xi−1) = 2iy2.

For x ∈ [xi, xi+1] the following inequalities hold:

y′′(x) ≥ 2iy2,

y′(x) > y′(x)− y′(xi) ≥ 2iy2(x− xi),

y(x) > y(x)− y(xi) ≥ 2i−1 y2(x− xi)
2.

Then from equation (1.1) we derive

y′′′(x) > m
∣∣2i−1y2(x− xi)

2
∣∣k0∣∣2iy2(x− xi)

∣∣k1 |2iy2|k2 ,
y′′′(x) > m · 2i(k0+k1+k2)−k0yk0+k1+k2

2 (x− xi)
2k0+k1 .

By integrating this inequality on [xi, xi+1], we obtain

2i+1y2 − 2iy2 >
m · 2i(k0+k1+k2)−k0

2k0 + k1 + 1
yk0+k1+k2
2 (xi+1 − xi)

2k0+k1+1,

2iy
−(k0+k1+k2−1)
2 >

m · 2i(k0+k1+k2)−k0

2k0 + k1 + 1
(xi+1 − xi)

2k0+k1+1,

(xi+1 − xi)
2k0+k1+1 <

(2k0 + k1 + 1) · 2k0
m

(2iy2)
−(k0+k1+k2−1),
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and, since 2k0 + k1 + 1 > 0,

xi+1 − xi <
((2k0 + k1 + 1)2k0

m

) 1
2k0+k1+1

(2iy2)
− k0+k1+k2−1

2k0+k1+1 .

Now let us summarize these inequalities:

+∞∑
i=0

(xi+1 − xi) <
((2k0 + k1 + 1)2k0

m

) 1
2k0+k1+1

y
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2k0+k1+1

2

+∞∑
i=0

2
−i

k0+k1+k2−1
2k0+k1+1 .

Since k0 + k1 + k2 > 1, the series in the right part converges and

x̃− x0 = lim
i→+∞

xi − x0 =
+∞∑
i=0

(xi+1 − xi) < ξy
− k0+k1+k2−1

2k0+k1+1

2 ,

with ξ =
( (2k0+k1+1)2k0

m

) 1
2k0+k1+1 (1− 2

− k0+k1+k2−1
2k0+k1+1 )−1.

Thus, x̃ is finite and the theorem is proved.

Theorem 2.4. Suppose k0+k1+k2 ̸= 1, k2 ̸= 1, k2 ̸= 2, and the function p(x, u, v, w) is continuous,
Lipschitz continuous in u, v, w, and satisfies inequalities (1.2). Let y(x) be a maximally extended
solution to equation (1.1), satisfying the conditions y(x0) ≥ 0, y′(x0) ≥ 0, y′′(x0) > 0 at some point
x0. Then

1. if k0 + k1 + k2 < 1, then y → +∞, y′ → +∞, y′′ → +∞ as x → x̃ < +∞ or y → +∞,
y′ → +∞, y′′ → +∞ as x → x̃ = +∞;

2. if k0 + k1 + k2 > 1, k1 ≤ 1, k2 < 1, then y → +∞, y′ → +∞, y′′ → +∞ as x → x̃ < ∞;

3. if k1 > 1, k2 < 1, then y → const, y′ → +∞, y′′ → +∞ as x → x̃ < ∞ or y → +∞,
y′ → +∞, y′′ → +∞ as x → x̃ < ∞;

4. if 1 < k2 < 2, then y → const, y′ → +∞, y′′ → +∞ as x → x̃ < ∞;

5. if k2 > 2, then y → const, y′ → const, y′′ → +∞ as x → x̃ < ∞.

Proof. Since the initial data are nonnegative as well as the function p(x, u, v, w), solution y(x) and
its first, second and third derivatives are positive and increasing as x → x̃, where x̃ is a right
domain boundary of y(x). According to the Theorem 2.2, the second derivative is increasing and
unbounded.

Let us show that if the first derivative is bounded, then the solution with positive initial data
cannot be bounded. Indeed, let y′ ≤ C, then y ≤ C(x− x0)+ y(x0), which implies that in the case
x̃ < +∞ the solution is also bounded. If the solution is infinitely extensible to the right, then, since
y′(x0) > 0, we derive y(x) > y′(x0)(x − x0) + y(x0), and unboundedness of this solution follows
from unboundedness of x.

Thus, there are three possible options: a solution and its first derivative are bounded; a solution
is bounded, but its derivative is unbounded, and both solution and its derivative are unbounded.

At first, let us consider the case k2 > 2. In this case k0 + k1 + k2 > 1, and by Theorem 2.3, the
domain of solution is finite. Values k0+1 and k1+1 are positive; besides, 1− k2 < 2− k2 < 0, and
therefore, using inequality (2.1) on the interval (x0, x), as x → x̃ we have

m(y(x0))
k0 (y′(x))k1+1 − (y′(x0))

k1+1

k1 + 1
≤ (y′′(x))2−k2 − (y′′(x0))

2−k2

2− k2
< +∞,
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which implies that y′(x) is bounded as x → x̃. Analogously, inequality (2.1) implies that the
solution y(x) is also bounded.

Consider the case 1 < k1 < 2. Again, k0 + k1 + k2 > 1, and, by Theorem 2.3, the domain of
y(x) is finite; also 1 − k2 < 0 < 2 − k2, and, due to (2.1), (2.2) and the fact that y′′ → +∞ as
x → x̃, we derive

M(y(x))k0
(y′(x))k1+1 − (y′(x0))

k1+1

k1 + 1
≥ (y′′(x))2−k2 − (y′′(x0))

2−k2

2− k2
→ +∞,

m(y′(x0))
k1−1 (y(x))

k0+1 − (y(x0))
k0+1

k0 + 1
≤ (y′′(x))1−k2 − (y′′(x0))

1−k2

1− k2
< +∞,

hence y(x) → const and y′(x) → +∞ as x → x̃.
Further, suppose k2 < 1, k1 > 1. Then k0 + k1 + k2 > 1, the domain of solution is finite,

2− k2 > 1− k2 > 0, and we obtain

M(y(x))k0
(y′(x))k1+1 − (y′(x0))

k1+1

k1 + 1
≥ (y′′(x))2−k2 − (y′′(x0))

2−k2

2− k2
−→ +∞,

M(y′(x))k1−1 (y(x))
k0+1 − (y(x0))

k0+1

k0 + 1
≥ (y′′(x))1−k2 − (y′′(x0))

1−k2

1− k2
−→ +∞.

In this case there are two possible options: y → const, y′ → +∞, and y → +∞, y′ → +∞.
Finally, for k2 < 1, k1 ≤ 1, according to the above inequalities, the only possible option is

y → +∞, y′ → +∞; moreover, if k0 + k1 + k2 > 1, then x̃ < +∞, and the theorem is proved.

Remark 2.1. In the cases 1 and 3 Theorem 2.4 does not state the existence of solutions of every
possible type of behavior. In the cases 4 and 5 for k0 ≥ 1, k1 ≥ 1, k2 > 1 the existence of solutions
of described type is guaranteed by classical existence and uniqueness theorem. For 0 < k0 < 1,
k1 ≥ 1, k2 ≥ 1 the existence of solutions to equation (1.1) with positive initial data is guaranteed
by the following theorem.

Theorem 2.5 (I. Astashova, [1]). Let the function p(x, y0, . . . , yn−1) be continuous in x and Lip-
schitz continuous in y0, . . . , yn−1. Then for any set of numbers x0, y

0
0, . . . , y

0
n−1 with not every y0i

equal to zero, the corresponding Cauchy problem for the equation

y(n) = p(x, y, y′, . . . , y(n−1))|y|k sgn y, n ≥ 2, 0 < k < 1,

has a unique solution.
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