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In the domain [0; 1] × [0;T ], where T = const > 0, let us consider the initial-boundary value
problem for the heat equation

∂U(x, t)

∂t
− a

∂2U(x, t)

∂x2
= f(x, t),

U(0, t) = U(1, t) = 0, t ≥ 0,

U(x, 0) = U0(x), x ∈ [0; 1],

(1)

where a is a positive constant and U0 and f are given functions.
For the numerical solution of problem (1) let us introduce a net whose mesh points are denoted

by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N with h = 1/M , τ = T/N and consider
the following weighted finite difference scheme (see, for example, [8]):
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+ σ2
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]
= η1f

j+1
i + η2f

j
i ,

i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

uj0 = ujM = 0, j = 0, 1, . . . , N,

u0i = U0,i, i = 0, 1, . . . ,M.

(2)

Here the initial line is denoted by j = 0. The discrete approximation at (xi, tj) is denoted by uji
and the exact solution to problem (1) at those points is denoted by U j

i .
Qualitative and quantitative properties, as well as numerical solution for problem (1) and its

nonlinear analogs are well studied in the literature (see, for example, [2, 3, 8] and the references
therein). By tuning the parameters τ , h, σ1, σ2, η1, η2 and take relevant approximation for the
right side the stability of the scheme (2), the different accuracy can be achieved for the numerical
solution.

Our goal is to find the above-mentioned parameters automatically by using Bayesian machine
learning. In particular, we will minimize objective function applying Bayesian Optimization (BO).
The objective function is designed as a maximum of the absolute value of the difference between
exact and numerical solutions at each grid point (xi, tj), i = 0, 1, . . . ,M ; j = 0, 1, . . . , N . For
training, the different types of initial and boundary conditions with the corresponding right-hand
side were selected. The output of the objective function depend on unknown parameters implic-
itly. Thus, we deal with, so-called black-box function optimization problem [1]. Since we do not
have the close formula for the objective function, there is no information regarding gradient. So,
the derivative-free optimization method is needed. BO is one of the most popular black-box op-
timization methods [1, 4–6]. It is based on Gaussian Process (GP) and Bayes Theorem [7]. BO
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is a model-based approach that makes sequential decisions to search the space, so the number of
simulations gets minimized.

A GP is a generalization of the Gaussian Probability Distribution. Notation for Gaussian prob-
ability distribution is N (µ, σ), where µ is mean and σ is standard deviation of random variables.
While a Gaussian probability distribution describes random variables which are scalars or vec-
tors, a stochastic process governs the properties of functions. GP is an extension of Multivariate
Gaussian Distribution. In turn, the multivariate Gaussian distribution is a generalization of the
one-dimensional normal distribution to higher dimensions. The probability density function of the
multivariate Gaussian distribution in D-dimensions is defined by the following formula:

g(z) =
1

(2π)D/2|Σ|1/2
exp

[
− 1

2
(z − µ)′Σ−1(z − µ)

]
,

where, in general Σ′ denotes transpose of Σ, Σ−1 denotes inverse of Σ, µ = (µ1, µ2, . . . , µD) is mean
vector of z = (z1, z2, . . . , zD) and Σ = cov[z] is the D × D covariance matrix, which is positively
defined and is constructed by, one of the so-called covariance functions [7]. One of the common
covariance function is Squared Exponential function:

KSE = k(zi, zj) = σ exp
(
−1

2

∥zi − zj∥2

θ2

)
,

where σ and θ are hyper-parameters which can be tuned by users. Note that GP is fully described
by mean and covariance functions.

Most of the efficiency derived from Bayesian optimization ability to incorporate prior belief
about the problem to help direct the sampling, and to trade of exploration and exploitation of
the search space [1]. Algorithm is called Bayesian because it uses the well-known Bayes Theorem,
which can be stated as follows

P (A | B) ∼ P (B | A)P (A),

where P (A | B) is probability of A given B, P (B | A) is probability of B given A and P (A) is the
marginal probability [1, 7].

Let us now consider how the new query can be obtained using the aforementioned Bayes Theo-
rem. Assume, the dataset with n points is already obtained D1:n = {z1:n, g(z1:n)}. Bayes Theorem
helps to estimate posterior distribution P (g | D1:n) by combining a prior distribution P (g) with
the likelihood function P (D1:n | g)

P (g | D1:n) ∼ P (D1:n | g)P (g).

To find the next sample point zn+1, the so-called acquisition function is maximized. There
are different types of acquisition functions. One of the most popular acquisition function is Upper
Confidence Bound (UCB)

UCB(z) = µ(z) + κσ(z),

where κ is tunable trade-off parameter.
The BO algorithm performs as follows:

1. Collect data D1:n = {z1:n, g(z1:n)} and fit the GP. Note, that BO can be started from one
point dataset;

2. Find the next querying point by maximizing acquisition function;

3. Augment dataset D1:n+1 = {z1:n+1, g(z1:n+1)} and update GP;
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4. End process when the desired accuracy is obtained or the number of iterations reaches a
certain value.

Note that all steps in the BO algorithm are clear except step 3 (note also that since the
evaluation of the acquisition function is not expensive its maximization in step 2 can be done by
some standard optimization algorithm). In step 3 we need to update the GP and find the updated
mean and variance functions, based on which the acquisition functions are constructed. Bellow,
the close formulas for calculating the updated mean and variance functions are given. Assume,
dataset D1:n = {z1:n, g(z1:n)} is already obtained. The function values are drawn according to a
multivariate normal distribution N (0,K), where the kernel matrix is given by:

K =

k(z1, z1) · · · k(z1, zn)
... . . . ...

k(zn, z1) · · · k(zn, zn)

 .

Let us denote gn+1 = g(zn+1), where zn+1 is the next sampling point, which is obtained from
the maximization of the acquisition function. gn+1 and g1:n are jointly Gaussian:[

g1:n
gn+1

]
∼ N

(
0,

[
K k
k′ k(zn+1, zn+1)

])
,

where
k =

[
k(zn+1, z1), k(zn+1, z2), . . . , k(zn+1, zn)

]
.

Using the Sherman–Morrison–Woodbury formula [1,7] the following predictive distribution can
be obtained:

P (gn+1 | D1:n+1, zn+1) ∼ N
(
µn(zn+1), σ

2
n(zn+1)

)
,

where

µn(zn+1) = k′K−1g1:n,

σ2
n(zn+1) = k(zn+1, zn+1)− k′K−1k.

To implement the BO for our problem the IMGPO (Infinite-Metric GP Optimization) algorithm
is used [4]. Note that the IMGPO algorithm does not require any prior data. It can be started
from any random point, say from the center point of the search space, as in our case. IMGPO uses
UCB acquisition function and avoids its maximization for finding the next sample point, instead it
handles the tradeoff with the assumption of the existence of a tighter bound than UCB and remain
the exponential convergence at the same time (for details see [4]).

In our numerical experiment we took σ2 = 1 − σ1, η2 = 1 − η1 and the search space is
(τ, h, σ1, η1) ∈ [0; 0.1] × [0; 0.1] × [0; 1] × [0; 1]. The stopping criterion for BO is as follows, the
algorithm stops when maximum error is less then τ + h2 and less than ε = 0.0001 or maximum
error is less than τ + h2 and maximum number of iterations I = 30 is reached.

We have carried out various numerical experiments for different test cases and found the values
of parameters for the best performance of the scheme (2).
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