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M. Jasný and J. Kurzweil [1,2] was the first who revealed the fact that unlike the second order
linear differential equations, the Emden-Fowler type nonlinear differential equation

u′′ = p(t)|u|λ sgn(u),

where λ = const > 1, and p : [a,+∞) → ]−∞, 0[ is a continuous function, may have simultaneously
oscillatory and nonoscillatory solutions.

According to F. V. Atkinson’s theorem [3], from the proven by J. Kurzweil [2] oscillation theorem
it follows that if the function t 7→ t

λ+3
2 |p(t)| is nondecreasing and

+∞∫
a

t|p(t)| dt < +∞,

then the above-mentioned Emden–Fowler type equation along with oscillatory solutions has also
separated from zero slowly growing solutions. Such type of theorems for different classes of super-
linear and sublinear differential equations of second and fourth order have been proven in [4–8].

We have established unimprovable in a certain sense conditions guaranteeing the fact that the
higher order Emden–Fowler type differential equation

u(n) = p(t)|u|λ(|u|) sgn(u) (1)

has Kurzweil’s property. Here, n > 3, p : [a,+∞[→ R is a function, Lebesgue integrable on every
finite interval contained in [a,+∞[ , a > 0, and λ : [0,+∞[→ R is a continuous function. Moreover,
the function p satisfies the inequality

(−1)n−n0p(t) ≤ 0 for t ≥ a, (2)

where n0 is the integer part of number n
2 , and the function λ satisfies either the condition

1 < λ(x) ≤ λ(y) for 0 < x < y < +∞, (3)

or the conditions

λ(0) > 1, λ(x) ≥ λ(y) for 0 ≤ x < y < +∞, −∞ < λ0 = lim
x→+∞

λ(x) < 1,

lim sup
x→+∞

(λ(x)− λ0) ln(x) < +∞.
(4)

Let t0 ∈ [a,+∞[ . The solution u : [t0,+∞[→ R of equation (1) is said to be proper if it is not
identically equal to zero in non of the neighborhood of +∞.

The proper solution u : [t0,+∞[→ R is called:
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1) oscillatory if it changes its sign in any neighborhood of +∞ and nonoscillatory, otherwise;

2) Kneser solution if

u(t) ̸= 0, (−1)iu(i)(t)u(t) ≥ 0 for t ≥ t0 (i = 1, . . . , n− 1);

3) vanishing at infinity if the equality

lim
t→+∞

u(t) = 0

is fulfilled, and separated from zero if the inequality

lim inf
t→+∞

|u(t)| > 0

is fulfilled;

4) slowly growing if
lim sup
t→+∞

|u(n−1)(t)| < +∞

and rapidly growing if
lim

t→+∞
|u(n−1)(t)| = +∞.

Definition 1. Equation (1) has property K if it has a continuum of proper oscillatory solutions
and a continuum of separated from zero slowly growing solutions.

Definition 2. Equation (1) has property K0 if it has a continuum of proper oscillatory solutions, a
continuum of separated from zero slowly growing solutions and a continuum of vanishing at infinity
Kneser solutions.

Theorem 1. Let n0 be odd and along with (2) and (3), the condition
+∞∫
a

tn−2+λ(tx)|p(t)| dt = +∞ for x > 0 (5)

be fulfilled. Then equation (1) has property K if and only if
+∞∫
a

tn−1|p(t)| dt < +∞. (6)

Theorem 1′. Let n = 2n0+1 (n = 2n0), n0 be odd and conditions (2), (3), (5) and (6) be fulfilled.
Then every nonoscillatory proper solution of equation (1) is separated from zero Kneser solution
(either is separated from zero Kneser solution, or rapidly growing solution).

Theorem 2. Let n0 be even (odd) and along with (2) and (4) the condition
+∞∫
a

tn−n0+(n0−1)λ0 |p(t)| dt = +∞ (7)

be fulfilled. Then equation (1) has property K (property K0) if and only if
+∞∫
a

t(n−1)λ0 |p(t)| dt < +∞. (8)
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Theorem 2′. Let n0 be even (odd) and conditions (2), (4), (7) and (8) be fulfilled. Then every
proper nonoscillatory solution of equation (1) is separated from zero slowly growing (either is
separated from zero slowly growing, or vanishing at infinity Kneser solution).

Example. Let
λ(x) = λ0 +

λ1

1 + |x|
, where λ0 ∈ ]−∞, 1[ , λ1 > 1− λ0. (9)

Then conditions (4) are fulfilled. Therefore, if n0 is even (is odd) and the function p satisfies
conditions (2), (7) and (8), then equation (1) has property K (property K0). Moreover, every
proper nonoscillatory solution of that equation is separated from zero slowly growing (either is
separated from zero slowly growing, or vanishing at infinity Kneser solution).

Remark. Condition (7) in Theorems 2 and 2′ is unimprovable in the sense that it cannot be
replaced by the condition

+∞∫
0

tn−n0+(n0−1)λ0+ε|p(t)| dt = +∞,

no matter how small ε > 0 is.

Finally, it should be noted that in the case n = 3 the question on the validity of Theorems 1
and 2 remains open. In particular, the following problems remain unsolved.

Problem 1. Let n = 3, λ(x) ≡ λ0 > 1,

p(t) ≤ 0 for t ≥ a,

+∞∫
a

t1+λ0 |p(t)| dt = +∞,

+∞∫
a

t2|p(t)| dt < +∞.

Then, does equation (1) have at least one proper oscillatory solution or not?

Problem 2. Let n = 3 and along with (9) the conditions

p(t) ≤ 0 for t ≥ a,

+∞∫
a

t2|p(t)| dt = +∞,

+∞∫
a

t2λ0 |p(t)| dt < +∞

be fulfilled. Then, does equation (1) have at least one proper oscillatory solution or not?

References
[1] M. Jasný, On the existence of an oscillating solution of the nonlinear differential equation of

the second order y′′+f(x)y2n−1 = 0, f(x) > 0. (Russian) Časopis Pěst. Mat. 85 (1960), no. 1,
78–83.

[2] J. Kurzweil, A note on oscillatory solution of equation y′′ + f(x)y2n−1 = 0. (Russian) Časopis
Pěst. Mat. 85 (1960), no. 3, 357–358.

[3] F. V. Atkinson, On second-order non-linear oscillations. Pacific J. Math. 5 (1955), no. 3,
643–647.

[4] D. V. Izjumova, Conditions for the oscillatory and non-oscillatory nature of non-linear dif-
ferential equations of second order. (Russian) Differencial’nye Uravnenija 2 (1966), no. 12,
1572–1586.



102 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

[5] K.-L. Chiou, The existence of oscillatory solutions for the equation d2y
dt2

+q(t)yr = 0, 0 < r < 1.
Proc. Amer. Math. Soc. 35 (1972), no. 1, 120–122.

[6] J. W. Heidel and I. T. Kiguradze, Oscillatory solutions for a generalized sublinear second order
differential equation. Proc. Amer. Math. Soc. 38 (1973), no. 1, 80–82.

[7] T. Kura, Oscillation theorems for a second order sublinear ordinary differential equation. Proc.
Amer. Math. Soc. 84 (1982), no. 4, 535–538.

[8] T. Kura, Existence of oscillatory solutions for fourth order superlinear ordinary differential
equations. Hiroshima Math. J. 13 (1983), no. 3, 653–664.


