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Let (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and an
increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E we
denote the expectation on this probability space. By Z := (z1, . . . , zm)T we denote an m-dimen-
sional semimartingale (see, e.g. [7]). A popular example of such Z is the vector Brownian motion
(the Wiener process). The linear space kn consists of all n-dimensional F0-measurable random
variables.

The main idea of the method, which is outlined below, is to represent the property of Lyapunov
stability in terms of invertibility of certain linear operators in suitable functional spaces.

The following linear homogeneous stochastic delay differential equation is considered

dx(t) = (Vhx)(t) dZ(t) (t ≥ 0) (1)

endowed with two initial conditions

x(s) = φ(s) (s < 0) (2)

and
x(0) = b. (3)

Here Vh is a k-linear Volterra operator which is defined in certain linear spaces of vector stochastic
processes, φ is an B(−∞, 0) ⊗ F0-measurable stochastic process and b ∈ kn. By k-linearity of the
operator Vh we mean the following property

Vh(α1x1 + α2x2) = α1Vhx1 + α2Vhx2,

which holds for all F0-measurable, bounded and scalar random values α1, α2 and all stochastic
processes x1, x2 belonging to the domain of the operator Vh. The exact assumptions on the
domain and the range of Vh are specified below in connection with the properties of the associated
operator V .

The solution of the initial value problem (1)–(3) will be denoted by x(t, b, φ), t ∈ (−∞,∞).
The solution is always assumed to exist and to be unique for an appropriate choice of φ(s), b: for
specific conditions see e.g. [3].

According to the habilitation thesis [3], the following classes of linear stochastic equations are
particular cases of Eq. (1):
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(A) Systems of linear ordinary (i.e. non-delay) stochastic differential equations driven by an
arbitrary semimartingale (in particular, systems of ordinary Itô equations);

(B) Systems of linear stochastic differential equations with discrete delays driven by a semimartin-
gale (in particular, systems of Itô equations with discrete delays);

(C) Systems of linear stochastic differential equations with distributed delays driven by a semi-
martingale (in particular, systems of Itô equations with distributed delays);

(D) Systems of linear stochastic integro-differential equations driven by a semimartingale (in
particular, systems of Itô integro-differential equations);

(E) Systems of linear stochastic functional difference equations driven by a semimartingale (in
particular, systems of Itô functional difference equations).

Definition 1. For a given real number q (1 ≤ q < ∞) we call the zero solution of Eq. (1)

• q-stable (with respect to the initial data b and φ) if for any ε > 0 there is δ(ε) > 0 such that
E|b|q +ess sup

s<0
E|φ(s)|q < δ implies E|x(t, b, φ)|q ≤ ε for all t ≥ 0 and all F0-measurable φ, b;

• exponentially q-stable if there exist positive constants K, λ such that the inequality

E|x(t, b, φ)|q ≤ K
(
E|b|q + ess sup

s<0
E|φ(s)|q

)
exp{−λs}

holds true for all t ≥ 0 and all F0-measurable φ, b.

Let Sn be a linear subspace of the space of Ft-adapted, n-dimensional stochastic processes
whose trajectories belong to a normed space E with the norm ∥ · ∥E . Then we denote by Sn

q

(1 ≤ q < ∞), the linear subspace of Sn containing all processes f ∈ Sn, for which the norm defined
by ∥f∥qSn

q
= E∥f∥qE is finite.

For instance, if Φn stands for all F0-measurable, n-dimensional prehistory functions φ with
essentially bounded trajectories, then the norm in Φn

q is given by

∥φ∥q = ess sup
s<0

E|φ(s)|q.

This simplifies the notation in Definition 1, where the expression E|b|q + ess sups<0E|φ(s)|q may
be replaced by ∥b∥qknq + ∥φ∥qΦn

q
.

To describe the regularization method, one needs to represent (1)–(2) in a canonical form
[1,3]. Let x(t) be a stochastic process on [0,+∞) and x+(t) be a stochastic process on (−∞,+∞)
coinciding with x(t) for t ≥ 0 and equalling 0 for t < 0, while φ−(t) be a stochastic process
on (−∞,+∞) coinciding with φ(t) for t < 0 and equalling 0 for t ≥ 0. Then the stochastic
process x+(t) + φ−(t), defined for t ∈ (−∞,+∞) will be a solution of the problem (1)–(3) if x(t)
(t ∈ [0,+∞)) satisfies the initial value problem

dx(t) =
[
(V x)(t) + f(t)

]
dZ(t) (t ≥ 0), (4)

x(0) = b, (5)

where (V x)(t) := (Vhx+)(t), f(t) := (Vhφ−)(t) for t ≥ 0. Indeed, by k-linearity we have that
Vh(x+ + φ−) = Vh(x+) + Vh(φ−) = V x + f , which gives (4). Note that f is uniquely defined by
the prehistory function φ. Let us also observe that the initial value problem (4)–(5) is equivalent
to the initial value problem (1)–(3) only for f , which have the representation f = Vhφ

′, where φ′

is an arbitrary extension of the function φ to the real line (−∞,∞).
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The solution of (4)–(5) is below denoted by xf (t, b).
Let Bn be a linear subspace of the space of Ft-adapted stochastic processes with trajectories

which are almost surely essentially bounded on [0,∞). According to our notation, the norm in the
space Bn

q is defined by
∥f∥qBn

q
= ess sup

t≥0
E|f(t)|q.

Let Ln(Z) be the set of all n × m-matrix predictable stochastic processes defined on [0,+∞)
and whose rows are locally integrable with respect to the semimartingale Z, see e.g. [3], and Dn

be the set of all n-dimensional stochastic processes on [0,+∞), which can be represented as

x(t) = x(0) +

t∫
0

H(s) dZ(s),

where x(0) ∈ kn, H ∈ Ln(Z). The space Dn and its linear subspaces Dn
q are called the spaces of

solutions of Eq. (4) (see [3]). The operator V is usually assumed to be a bounded linear operator
from Dn

q to Ln
q (Z) for some 1 ≤ q < ∞.

This yields two linear operators

L1 : φ 7−→ (Vhφ−)(t) (6)

and
L2 : f 7−→ xf ( · , b). (7)

The following result is crucial for the framework (see e.g. [5]).

Theorem 1. Assume that the linear operators L1 : Φq → Bn
q and L2 : Bn

q → Dn
q are bounded.

Then the zero solution of Eq. (1) is q-stable in the sense of Definition 1.

In applications, the operator L1 is usually bounded, so that the only challenge in application
of Theorem 1 is to prove boundedness of the operator L2. This can be done by the regularization
method called in [1] and [3] ‘the W -method’. The regularization is usually constructed with the
help of an auxiliary equation

dx(t) =
[
(Qx)(t) + g(t)

]
dZ(t) (t ≥ 0), (8)

where Q is again a k-linear Volterra operator. This equation is similar to Eq. (4), possesses the
existence and uniqueness property as well, but it is usually chosen to be ‘simpler’ in the sense that
the required stability property for this equation is already known (see assumption (2) in Theorem 2
below).

The following representation formula for the solutions of Eq. (8) can be directly deduced from
the existence and uniqueness property

x(t) = U(t)x(0) + (Wg)(t) (t ≥ 0), (9)

where U(t) is the fundamental matrix of the associated homogeneous equation, and W is the
corresponding Cauchy operator.

Using representation (9) we can regularize Eq. (4). This algorithm is based on the framework
described in [3, 5].

Using Eq. (8) we rewrite Eq. (4) as follows

dx(t) =
[
(Qx)(t) + ((V −Q)x)(t) + f(t)

]
dZ(t) (t ≥ 0),
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or, taking (9) into account, as

x(t) = U(t)x(0) + (W (V −Q)x)(t) + (Wf)(t) (t ≥ 0).

Putting W (V −Q) = Θ, we obtain the operator equation

x(t) = (Θx)(t) + U(t)x(0) + (Wf)(t) (t ≥ 0). (10)

Theorem 2. Assume that Eq. (4) and the reference equation (8) satisfy the following conditions:

(1) the linear operators V , Q act continuously from Dn
q to Bn

q ;

(2) the Cauchy operator W in (9) constructed for the reference equation (8) is bounded as an
operator from Bn

q to Dn
q ;

(3) the operator I −Θ : Dn
q → Dn

q has a bounded inverse.

Then the operator L2 : B
n
q → Dn

q in (7) is bounded.

Theorems 1 and 2 justify the regularization method for Lyapunov stability of stochastic linear
functional differential equations. The main challenge of the method is to prove that the operator
I −Θ has a bounded inverse. In [3–5] (see also the references therein) this property is checked by
estimating the norm of the integral operator Θ: if ∥Θ∥Dn

q
< 1 in the inequality

∥x∥Dn
q
≤ ∥Θ∥Dn

q
∥x∥Dn

q
+K1∥x(0)∥knq +K2∥f∥Bn

q
, (11)

then Eq. (1) is q-stable due to Theorem 1. Moreover, if q ≥ 2 and the equation remains q-stable
after the substitution y(t) = exp(λt)x(t) for some positive λ, then Eq. (1) is, in fact, exponentially
q-stable.

Another approach, which has recently been suggested in [2] in the deterministic case and in [6]
in the stochastic case, is based on the properties of monotone operators. In this case, the estimation
is done componentwise, and if the resulting matrix has a bounded inverse, then one still obtains
inequalities like (11). A short description of this method is given below.

Recall that an m×m-matrix B = (bij)
m
i,j=1 is said to be nonnegative, resp. positive if bij ≥ 0,

resp. bij > 0 for all i, j = 1, . . . ,m.

Definition 2. A matrix Γ = (γij)
n
i,j=1 is called a (non-singular) M-matrix if γij ≤ 0 for i, j =

1, . . . , n, i ̸= j, and all the principal minors of the matrix Γ are positive.

Let
x(t) = col(x1(t), . . . , xn(t)), xi = sup

t≥0

(
E|xi(t)|q

)1/q
, x = col(x1, . . . , xn).

Suppose that after componentwise estimation in the vector equation (10) we get the following vector
inequality

Dx ≤ ∥x(0)∥knq e1 + ∥f∥Bn
q
e2, (12)

where D is an n × n-matrix, e1, e2 are some column n-vectors with nonnegative components.
Typically, D = E − T , where E is the n × n identity matrix, while T and ei replace Θ and Ki

(i = 1, 2) in the scalar inequality (11), respectively. Then we obtain

Theorem 3. If D is an M-matrix in the sense of Definition 2, then the operator L2 : Bn
q → Dn

q

in (7) is bounded.
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Proof. As D is an M-matrix, the matrix D−1 is positive, and we can rewrite (12) as

x ≤ D−1
(
∥x(0)∥knq e1 + ∥f∥Bn

q
e2
)
.

Therefore,
|x| ≤ K

(
∥x(0)∥knq + ∥f∥Bn

q

)
, (13)

where K = ∥D−1∥max{|e1|, |e2|}. As ∥x∥Dn
q

≤ |x|, we conclude from (13) that x ∈ Dn
q and

∥x∥Dn
q
≤ K(∥b∥knq +∥f∥Bn

q
) for some positive K. Thus, the operator L2 : Bn

q → Dn
q is bounded.

Again, if q ≥ 2 and one uses the substitution y(t) = exp(λt)x(t) for some positive λ and
Theorems 1, 3 and proves q-stability of the equation for y(t), then this result will imply exponential
q-stability of Eq. (1).

The outlined frameworks can be applied to all systems of stochastic differential equations men-
tioned above as classes (A)–(E). Notice that the second Lyapunov method might be difficult to use
in many of these cases.
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