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Consider the planar autonomous differential system
dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where the functions P,Q : R2 → R are 2π-periodic in the first variable. Under this assumption
we can identify the phase space of (1) with the cylinder Z := S1 × R, where S1 is the unit circle.
The most difficult problem in the qualitative investigation of autonomous differential systems is
the localization and the estimate of the number of limit cycles.

In the case of a cylindrical phase space we have to distinguish two kinds of limit cycles. A limit
cycle of system (1) which does not surround Z is called a limit cycle of the first kind, otherwise it
is called a limit cycle of the second kind. Whereas the existence of a limit cycle of the first kind
of system (1) requires the existence of an equilibrium point, a limit cycle of the second kind can
exist without the existence of any equilibrium point [1, p. 34–35], [2, p. 218–227]. For the study
of limit cycles of the first kind, the methods for planar autonomous systems can be applied (see,
e.g. [2]). In particular, a well-known way to get an upper bound for the number of limit cycles of
the first kind in planar systems is to check whether the criteria of I. Bendixson and H. Dulac [2]
can be applied.

The method of the Dulac function has been extended by L. Cherkas [3]. The type of functions
he has introduced nowadays is called Dulac–Cherkas function [7]. The existence of a Dulac–Cherkas
function has the following advantages over a Dulac function: it guarantees that all limit cycles are
hyperbolic (there is no multiple limit cycle), it provides some annuli containing a unique limit cycle
(approximate localization of a limit cycle), it yields a simple criterion to determine the stability
of limit cycles and provides lower and upper bounds for their maximum number. These functions
have been applied by L. Cherkas and his coauthors also for the investigation of limit cycles of the
second kind [4, 5, 8].

The fundamental importance of a Dulac–Cherkas function consists in the fact that its zero-level
set defines curves which are crossed transversally by the trajectories of the corresponding system.
We denote these curves in what follows as transversal curves. By this way, the cylindrical phase
space is divided into doubly connected regions, where we have to distinguish between interior
regions whose boundaries consist of transversal curves and which contain a unique limit cycle,
and two outer regions, where only one boundary of these regions is a transversal curve and which
contain at most one limit cycle. To be able to determine the exact number of limit cycles we have
to investigate the existence of a limit cycle in the two outer regions. The main contribution of this
paper is to show that the existence of a unique limit cycle in the outer regions can be established
either by means of the existence of additional Dulac–Cherkas functions or by factorized Dulac
functions. Thus, we present results on the exact number of limit cycles of the second kind.

The estimate of the number of limit cycles in some given region depends also on the structure
of the region itself. Hence, our first assumption reads
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(A0). Let G be an open bounded doubly connected region on Z whose boundary consists of two
simple closed curves ∆u and ∆l surrounding Z. We suppose that ∆u is located above ∆l,
that is, ∆u is the upper boundary and ∆l is the lower boundary of G.

We denote by C1
2π(G,R) the space of continuously differentiable functions mapping G into R and

which are 2π-periodic in the first variable. For the following we assume:

(A1). The functions P and Q belong to the space C1
2π(G,R).

(A2). G does not contain an equilibrium point of (1).

Assumption (A2) implies that any closed orbit of system (1) completely located in G must surround
the cylinder Z. That means that any limit cycle of system (1) in G is a limit cycle of the second
kind which we denote by Γ. Our goal is to determine or at least to estimate the number of limit
cycles of the second kind of system (1) in G. We denote this number by ♯Γ(G). The vector field
defined by system (1) is denoted by X.

A known tool to estimate the number ♯Γ(G) is the Dulac function.

Definition 1. A function D ∈ C1
2π(G,R) is called a Dulac function of system (1) in G if div(DX)

does not change sign in G.

The following result is well-known [2].

Theorem 1. Suppose the assumptions (A0)–(A2) are satisfied. If there is a Dulac function of
system (1) in the region G, then it holds ♯Γ(G) 6 1.

The concept of the Dulac function has been generalized by L. Cherkas [3]. For this new class
of functions we introduced in [7] the name Dulac–Cherkas function.

Definition 2. Suppose the assumptions (A0) and (A1) are satisfied. A function Ψ ∈ C1
2π(G,R) is

called a Dulac–Cherkas function of system (1) in G if the set W := {(x, y) ∈ G : Ψ(x, y) = 0} does
not contain a curve which is a trajectory of system (1) and there is a real number k ̸= 0 such that
the following condition holds

Φ(x, y, k) := (gradΨ, X) + kΨdivX > 0 (6 0) ∀ (x, y) ∈ G, (2)

where the set Vk := {(x, y) ∈ G : Φ(x, y, k) = 0} has measure zero.

For k = 1 the definition of a Dulac–Cherkas function coincides with the definition of a Dulac
function. If Ψ is a Dulac–Cherkas function of system (1) in G, then |Ψ|1/k is a Dulac function of
(1) in G \W . For the following results we introduce the assumption.

(A3). There is a Dulac–Cherkas function Ψ of system (1) in G with k < 0 such that the set W
consists of l > 1 simple closed curves w1, ..., wl surrounding the cylinder Z (we call them
ovals) and which do not meet each other as well as the boundaries ∆u and ∆l of G.

Remark 1. If we consider the function Φ on any oval wi of the set W , then we get from (2)

Φ(x, y, k)|wi
= (gradΨ, X)|wi

=
dΨ

dt |wi

> 0 (6 0),

where d/dt denotes the differentiation along system (1). The conditions in Definition 2 implies

dΨ

dt |wi

̸≡ 0,

and we can conclude that any trajectory of (1) which meets any oval wi will cross it for increasing
or decreasing t.
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Concerning the location of these ovals on the cylinder Z we assume that the oval wi is located
over the oval wi+1. The doubly connected subregion of G bounded by wi and wi+1 is denoted by
Zi, i = 1, . . . , l − 1, the region bounded by ∆u and w1 is denoted by Z0, and the region bounded
by wl and ∆l is denoted by Zl, which are the outer regions.

The following result is also known [5].

Theorem 2. Suppose that the assumptions (A0)–(A3) are valid. Then it holds:

(i) Each region Zi, 1 6 i 6 l − 1, contains a unique limit cycle Γi of the second kind of system
(1). Γi is hyperbolic, it is stable (unstable) if Φ(x, y, k)Ψ(x, y) > 0 (< 0) in Zi.

(ii) The regions Z0 and Zl may contain a unique limit cycle of the second kind which is hyperbolic,
and therefore, it implies immediately the estimate

l − 1 6 ♯Γ(G) 6 l + 1. (3)

Remark 2. Under the assumptions (A0)–(A3) any improvement of estimate (3) is connected with
the existence or absence of a limit cycle of the second kind in the regions Z0 and Zl.

Now we want to establish conditions for the existence of a limit cycle of the second kind in Z0

and/or in Zl. By Remark 1 we can conclude that any trajectory of system (1) that meets an oval
wi of the set W will cross wi for increasing or decreasing t. Therefore, appropriate Dulac–Cherkas
functions can be used to construct doubly-connected regions to which the Poincaré–Bendixson
theorem can be applied.

Theorem 3. Suppose that the assumptions (A0)–(A3) are valid. Additionally, we assume the exis-
tence of a second Dulac–Cherkas function Ψ0 of system (1) in some doubly connected subregion Z̃0 of
Z0 whose boundaries surround Z such that the corresponding set W0 := {(x, y) ∈ Z̃0 : Ψ0(x, y) = 0}
consists of exactly one oval v0 and where the ovals v0 and w1 form the boundaries of the doubly
connected region Z00 to which the Poincaré-Bendixson theorem can be applied. Then it holds

l 6 ♯Γ(G) 6 l + 1.

In the same way we can formulate the similar theorem for the region Zl.

Remark 3. If the assumptions of Theorem 3 are fulfilled simultaneously for both regions Z0 and
Zl, then it holds

♯Γ(G) = l + 1. (4)

The exact number of limit cycles of the second kind in G can be also determined by means of
an additional Dulac–Cherkas function defined in the same region G.

Theorem 4. Suppose the assumptions (A0)–(A3) are valid. Additionally, we assume the existence
of a second Dulac–Cherkas function Ψ1 of system (1) in G with k1 < 0 such that the corresponding
set W1 consists of l + 2 ovals. Then estimate (4) holds.

As the next step we present another approach based on factorized Dulac functions.
Let χ1 and χ2 be functions of the space C1

2π(G,R). For the following, we introduce the sets

Ui :=
{
(x, y) ∈ G : χi(x, y) = 0

}
, i = 1, 2.

We denote by U the set U := U1 ∪ U2 and define the function D : G \ U → R+ by

D(x, y, k1, k2) := |χ1(x, y)|k1 |χ2(x, y)|k2 , (5)
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where k1 and k2 are real numbers. For the divergence of the vector field we get from (5) in the
region G \ U

div(DX) = |χ1 |k1−1|χ2 |k2−1 sgnχ1 sgnχ2

(
χ1χ2 divX + k1χ2(gradχ1 , X) + k2χ1(gradχ2 , X)

)
.

Our goal is to derive conditions such that D is a Dulac function in some region of G\U . Therefore,
additionally we suppose

(C1). There are functions χ1 , χ2 ∈ C1
2π(G,R) and real numbers k1, k2 such that in G the following

condition holds

Θ(x, y, k1, k2) := χ1χ2 divX + k1χ2(gradχ1 , X) + k2χ1(gradχ2 , X) < 0 (> 0).

Since we are interested in estimating the number of limit cycles of the second kind in G, we
assume

(C2). The set U consists in G of n ovals surrounding Z.

We denote by v1, . . . , vm the ovals of U , where vi is located above vi+1. We denote by Zi, 1 6 i 6
n− 1, the open doubly connected region bounded by vi and vi+1, Z0 is the open doubly connected
region bounded by ∆u and v1, Zn is the open doubly connected region bounded by vn and ∆l.

Theorem 5. Suppose the assumptions (A0), (A1), (A2) and (C1) with k1 < 0, k2 < 0, and (C2)
are valid. Then it holds:

(i) Each region Zi, 1 6 i 6 n− 1, contains a unique limit cycle Γi of the second kind of system
(1). Γi is hyperbolic and stable (unstable) if the inequality

Θ(x, y, k1, k2)

χ1(x, y)χ2(x, y)
< 0 (> 0)

is valid in Zi.

(ii) In each of the regions Z0 and Zn a unique hyperbolic limit cycle of the second kind could be
located.

A detailed presentation of our approaches to check the existence of a limit cycle in the regions
Z0 and Zl or Zn by means of an additional Dulac–Cherkas functions or by special factorized Dulac
functions and their application to some classes of systems (1) are contained in our paper [6].
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