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1 Mathematical model

As is known the real controlled dynamical systems contain effects with delayed action and are
described by differential equations with delay in control [3]. To illustrate this, below we will
consider the simplest model of marketing relation.

Let t1 > t0, β > α ≥ 0 and θ2 > θ1 > 0 be given numbers. Let market relation demand and
supply be described by the functions D(t, p) and S(t, q), which are continuous and continuously
differentiable with respect to p and q.

Let the function p(t) ∈ P = [α, β], t ∈ I1 = [t0 − θ2, t1] be price of a good, changing over time.
Suppose that at time t ∈ I2 = [t0, t1] will be satisfied demand of consumer which has been ordered
at time t − θ, i.e. when price of a good was p(t − θ). Here θ ∈ I3 = [θ1, θ2] is so-called delay
parameter.

The function
R(t) = D(t, p(t))− S(t, p(t− θ)), t ∈ I2,

we call the disbalance index.
If R(t) = 0, then at the moment t we do not have disbalance between supply and demand, and

the customer will buy exactly the quantity of goods he needs.
It is clear that at various time moment t the disbalance index R(t) is possible to be not positive

as well as positive. At time t, if R(t) > 0, then demand exaggerates supply. If R(t) < 0, then
supply exaggerates demand. To describe development of marketing relation process in time, i.e.
create dynamical model, we consider the integral index of disbalance

y(t) = R(t0) +

t∫
t0

R(s) ds. (1.1)

The function y(t) gives complete information about the disbalance from the initial time t0 to any
time t.

From (1.1) we get the differential equation

ẏ(t) = D(t, p(t))− S(t, p(t− θ)), t ∈ I2 (1.2)

with the initial condition
y(t0) = y0 := R(t0).
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2 Statement of the problem. Necessary optimality conditions
Let O ⊂ Rn be an open set and U ⊂ Rr be a convex and compact set. Let the (n+1)-dimensional
function

F (t, x, u, v) =
(
f0(t, x, u, v), f(t, x, u, v)

)⊤
,

where f = (f1, . . . , fn)⊤, be continuous on I2×O×U2 and continuously differentiable with respect
to x and u, v. Furthermore, let x0, x1 ∈ O be fixed points and let Ω be a set of absolutely
continuous control functions u(t) ∈ U , t ∈ I1. To each element w = (θ, u) ∈ Λ := I3 × Ω we assign
the differential equation

ẋ(t) = f
(
t, x(t), u(t), u(t− θ)

)
, t ∈ (t0, t1) (2.1)

with the initial condition
x(t0) = x0. (2.2)

Definition 2.1. Let w = (θ, u) ∈ Λ. A function x(t) = x(t;w) ∈ O, t ∈ I2, is called a solution
of equation (2.1) with the initial condition (2.2) or a solution corresponding to the element w and
defined on the interval I2 if it satisfies condition (2.2) and is continuously differentiable and satisfies
equation (2.1) everywhere on (t0, t1).

Definition 2.2. An element w = (θ, u) ∈ Λ is said to be admissible if the corresponding solution
x(t) = x(t;w) satisfies the condition

x(t1) = x1. (2.3)

Denote by Λ0 the set of admissible elements.

Definition 2.3. An element w0 = (θ0, u0) ∈ Λ0 is said to be optimal if for an arbitrary element
w ∈ Λ0 we have

J(w0) ≤ J(w), (2.4)

where

J(w) =

t1∫
t0

f0(t, x(t), u(t), u(t− θ)) dt

and x(t) = x(t;w).

(2.1)–(2.4) is called the optimization problem of delay parameter θ and control u(t).

Theorem 2.1. Let w0 be an optimal element and let x0(t) = x(t;w0) be the optimal trajectory.
Then there exists a nontrivial solution Ψ(t) = (ψ0(t), ψ(t)) of the equation

ψ̇(t) = −Ψ(t)Fx[t], (2.5)

where
Fx[t] = Fx

(
t, x0(t), u0(t), u0(t− θ0)

)
,

such that ψ0(t) ≡ const ≤ 0 and the following conditions hold:

(i1) the integral condition for the optimal delay parameter θ0
t1∫

t0

Ψ(t)Fv[t]u̇0(t− θ0) dt = 0;
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(i2) the integral maximum principle for the optimal control u0(t)
t1∫

t0

Ψ(t)
[
Fu[t]u0(t) + Fv[t]u0(t− θ0)

]
dt = max

u(t)∈Ω

t1∫
t0

Ψ(t)
[
Fu[t]u(t) + Fv[t]u(t− θ0)

]
dt.

The necessary optimality condition for the delay parameter in controls for the optimization
problem with the Meyer type functional is provided in [2].

3 Optimization problem for equation (1.2).
Necessary optimality conditions

Let y1 be a fixed number and let V be a set of absolutely continuous control functions p(t) ∈ P ,
t ∈ I1. To each element ϑ = (θ, p) ∈ Π := I3 × V we assign the differential equation

ẏ = D(t, p(t))− S(t, p(t− θ)), t ∈ I2

with the initial condition
y(t0) = y0.

Definition 3.1. An element ϑ = (θ, p) ∈ Π is said to be admissible if the corresponding solution
y(t) = y(t;ϑ) satisfies the condition

y(t1) = y1.

Denote by Π0 the set of admissible elements.
Definition 3.2. An element ϑ0 = (θ0, p0) ∈ Π0 is said to be optimal if for an arbitrary element
ϑ ∈ Π0 we have

t1∫
t0

g(t, p0(t)) dt ≤
t1∫

t0

g(t, p(t)) dt,

where the function g(t, p) is continuous and continuously differentiable with respect to p.
It is clear that for the considered problem we have ψ̇ = 0 (see (2.5)). Taking into account the

last equation from Theorem 2.1 it follows
Theorem 3.1. Let ϑ0 be an optimal element. Then there exists a nontrivial vector Ψ = (ψ0, ψ),
ψ0 ≤ 0 such that the following conditions hold:
(i3) the integral condition for the optimal delay parameter θ0

ψ

t1∫
t0

Sq(t, p0(t− θ0))ṗ0(t− θ0) dt = 0;

(i4) the integral maximum principle for the optimal control p0(t)
t1∫

t0

[(
ψ0gp(t, p0(t)) + ψDp(t, p0(t))

)
p0(t)− ψSq(t, p0(t− θ0))p0(t− θ0)

]
dt

max
p(t)∈V

t1∫
t0

[(
ψ0gp(t, p0(t)) + ψDp(t, p0(t))

)
p(t)− ψSq(t, p0(t− θ0))p(t− θ0)

]
dt.

Analogous problem for equation (1.2) with the fixed θ is investigated in [1].
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