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Until the middle of the 20th century, the study of periodic solutions of periodic differential
systems was based on the hypothesis of the commensurability of the periods of a solution and a
system. At the same time, N. D. Papaleksi carried out work on the study of parametric effects
on dual-circuit electrical systems. He demonstrated the possibility of excitation of oscillations
at a frequency incommensurable with the frequency of changes in the system parameters [8]. In
1950, H. Massera showed that periodic differential systems can have periodic solutions such that
the period of a solution is incommensurable with the period of the system. His work [7] laid the
foundation for a new direction in the qualitative theory of differential equations which was further
developed in the studies of J. Kurzweil and O. Vejvoda [5], N. P. Erugin [2], I. V. Gaǐshun [3],
E. I. Grudo [4] and others. Subsequently, such periodic solutions were called strongly irregular [1, p.
16], and the oscillations described by them were called asynchronous. The problem of constructing
of asynchronous modes can be formulated as the problem of controlling of the spectrum of irregular
oscillations.

First we present the necessary definitions from the theory of almost periodic (on Bohr) functions
[6]. Let f be a real continuous function. The function f is called almost periodic if, for an arbitrary
positive ε, the set of its ε-almost-periods is relatively dense. Each almost periodic function f has
an average value

f̂ = lim
T→∞

1

T

T∫
0

f(s) ds.

Put f̃(t) = f(t) − f̂ . The function f̃ will be called the oscillating part of an almost periodic
function f . Note that in contrast to periodic functions, there exist almost periodic functions f̃
whose integral is not a almost periodic. A real number λ such that

lim
T→∞

1

T

T∫
0

exp(−iλs)f(s) ds ̸= 0

is called the Fourier exponent (or frequency) of an almost periodic function f . The set of all
frequencies forms the set of Fourier exponents (frequency spectrum) of the function f . The module
(frequency module) Mod(f) of an almost periodic function f is the smallest additive group of real
numbers containing all the Fourier exponents of this function.

Let g(t, x) be a vector function that is almost periodic in t uniformly with respect to x from
some compact set. An almost periodic solution x(t) of the system of ordinary differential equations

ẋ = g(t, x)
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will be called strongly irregular if the intersection of the frequency modules of the solution and the
right-hand side of the system is trivial, i.e.

Mod(x) ∩Mod(g) = {0}.

Let P (t) be a continuous matrix. Denote by rankcol P the column rank of the matrix P (t), i.e.
rankcol P is the largest number of its linearly independent columns.

Consider the linear control system

ẋ = A(t)x+Bu, t ∈ R, x ∈ Rn, n ≥ 2, (1)

where A(t) is a continuous almost periodic n×n-matrix, B is a constant n×n-matrix. We assume
that the linear state feedback control

u = U(t)x (2)
with a continuous almost periodic n× n-matrix U(t) is used, Mod(U) ⊆ Mod(A).

The problem of finding a matrix U(t) (the feedback factor) such that the closed-loop system

ẋ = (A(t) +BU(t))x

has a strongly irregular almost periodic solutions with a given frequency spectrum L (the objective
set) is called the control problem for the spectrum of irregular oscillations with objective set L
(control problem of asynchronous spectrum).

Note first that in the case of a non-singular matrix B, the solution of this problem is not difficult.
Therefore, we will assume that the matrix B is a singular,

rankB = r < n (n− r = d).

By Bd,n and Br,n we denote the matrices consisting of the first d rows and the remaining r rows of
the matrix B, respectively. One can assume that the first d rows of the matrix B are zero, i.e.,

rankBd,n = 0, (3)

because otherwise such a form can be achieved by a linear nonsingular stationary transformation.
Note that the rank of the matrix Br,n is equal to r as well.

We will also assume that the matrix A(t) has a zero mean value, i.e.,

Â = lim
T→∞

1

T

T∫
0

A(s) ds = 0, (4)

We give conditions for the solvability of the control problem of asynchronous spectrum for sys-
tem (1).

Let
L = {λ1, λ2, . . . }

be the objective frequency set.
Taking into account the structure of the matrix B, we represent the coefficient matrix A(t) in

a block form. Let Ad,d(t) and Ar,d(t) be its left upper and lower blocks, and let Ad,r(t) and Ar,r(t)
be the right upper and lower blocks (the subscripts show the block dimension).

The following theorem holds.

Theorem. Let the first d rows of the matrix B in system (1) be zero and the remaining rows be
linearly independent, let the coefficient matrix A(t) have a zero mean value, and let the following
estimates hold:
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(i) rankcol Ad,r = r1 < r;

(ii) |L| ≤ [(r − r1)/2].

Then the control problem for the spectrum of irregular oscillations with objective set L for system
(1) with feedback (2) is solvable.

Remark. Estimates (i) and (ii) in the theorem are necessary and sufficient conditions for the
solvability of the investigated problem for the class of systems (1) under assumptions (3), (4).
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