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We obtain sharp solvability conditions for focal boundary value problems for higher-order linear
functional differential equations with functional operators under integral and point-wise restrictions.

Consider the focal boundary value problem
(−1)(n−k)x(n)(t) + (Tx)(t) = f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , k − 1,

x(j)(1) = 0, j = k, . . . , n− 1,

(0.1)

where k ∈ {1, 2, . . . , n− 1}, n ≥ 2, T : C[0, 1] → L[0, 1] is a linear boundary operator, C[0, 1] and
L[0, 1] are the spaces of continuous and integrable real functions on the interval [0, 1] (wish usual
norms).

The problems of solving various focal boundary value problems for linear and nonlinear ordi-
nary differential equations and functional differential equations arise in many studies of physical,
chemical, and biological processes [1, 2, 8, 13,15].

For the zero operator T , the boundary value problem
(−1)(n−k)x(n)(t) = f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , k − 1,

x(j)(1) = 0, j = k, . . . , n− 1

has a unique solution x(t) =
1∫
0

G(t, s)f(s) ds, t ∈ [0, 1], where the Green function (see, for exam-

ple, [8])

G(t, s) =
1

(n− k − 1)!

1

(k − 1)!

min(t,s)∫
0

(s− τ)n−k−1(t− τ)k−1 dτ, t, s ∈ [0, 1],

is non-negative.

1 Integral restrictions
The following simple assertion is a corollary of the Banach fixed-point theorem and the Fredholm
property of the boundary value problem.

Assertion 1.1. If ∥T∥C→L ≤ (n− 1)(n− k − 1)!(k − 1)!, then problem (0.1) is uniquely solvable.

Definition 1.1. A linear operator T : C[0, 1] → L[0, 1] is called positive if it maps every nonneg-
ative continuous function into an almost everywhere nonnegative integrable function.
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In this work, we weaken the solvability conditions from Assertion 1.1 in the case of positive
operator T . For some other boundary value problems similar unimprovable conditions are obtained
by R. Hakl, A. Lomtatidze, S. Mukhigulashvili, B. Půža, J. Šremr, and others [6, 9–12].

The norm of a positive operator T : C[0, 1] → L[0, 1] is defined by the equality

∥T∥C→L =

1∫
0

(T1)(t) dt,

where 1 is the unit function.
Theorem 1.1. Let a non-negative number T be given. Problem (0.1) is uniquely solvable for all
linear positive operators T : C[0, 1] → L[0, 1] with norm T if and only if the following inequality is
valid:

T ≤ min
0<t<1, 0<s<1

G(t, 1) +G(1, s) + 2
√
G(t, s)G(1, 1)

G(t, s)G(1, 1)−G(t, 1)G(1, s)
.

Remark 1.1. In (1.1), the expression G(t, s)G(1, 1)−G(t, 1)G(1, s) is positive for all t, s ∈ (0, 1)
because of the kernel G(t, s) is totally positive (see, for example, [7, 14]).

The proof of Theorem 1.1 is based on the following lemma.
Lemma 1.1 ([3]). Let a non-negative number T be given. Problem (0.1) is uniquely solvable for
all linear positive operators T : C[0, 1] → L[0, 1] with norm T if and only if for all numbers c, d,
τ1, τ2, T1, T2 satisfied the conditions

c, d ∈ [0, 1], 0 ≤ τ1 ≤ τ2 ≤ 1,

T1 ≥ 0, T2 ≥ 0, T1 + T2 ≤ T ,

the inequality

1 + T1G(τ1, c) + T2G(τ2, d) + T1T2
(
G(τ1, c)G(τ2, d)−G(τ2, c)G(τ1, d)

)
≥ 0

is fulfilled.
Theorem 1.2. Let a non-negative number T be given and n = 2k. Problem (0.1) is uniquely
solvable for all linear positive operators T : C[0, 1] → L[0, 1] with norm T if and only if the
following inequality is valid:

T ≤ 2((n/2− 1)!)2

max
0<t<1

(
t(n−1)/2

n−1 −
t∫
0

(t− τ)n/2−1(1− τ)n/2−1 dτ
) ≡ Tn.

For n = 2, n = 4, n = 6, the numbers Tn can be calculated exactly. We have

T2 = 8,

T4 = 66 + 30
√
5 ≈ 133.1,

T6 =
8

t5/2

5 − t36(t
2
6−5t6+10)

30

≈ 2610.5,

where

t6 =
(C1 − 1−

√
27 + 22/C1 − C2

1

4

)2
,

C1 =
√

2C2 + 9 + 48/C2, C2 =
3

√
124 + 4

√
97 .

For even n ≥ 8, we obtain sufficient solvability conditions.
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Corollary 1.1. Let n = 2k ≥ 8 and a linear operator T : C[0, 1] → L[0, 1] be positive. If

∥T∥C→L ≤ (n2 − 9)(n2 − 1)((n/2− 1)!)2

3 + (n− 2)(n−7
n−3)

n+1
2

,

then the boundary value problem (0.1) is uniquely solvable.

Corollary 1.2. Let n = 2k ≥ 8 and a linear operator T : C[0, 1] → L[0, 1] be positive. If

∥T∥C→L ≤ e2(n− 3)3((n/2− 1)!)2, (1.1)

then the boundary value problem (0.1) is uniquely solvable.

Remark 1.2. The sufficient condition in Corollary 1.2 is sharp. The constant e2 and the exponents
cannot be increased in (1.1). Inequality (1.1) significantly improves the solvability condition from
Assertion 1.1 (the constant in the solvability conditions is increased approximately (en)2 times for
large n).

2 Point-wise restrictions
Consider problem (0.1) for k = n− 1,

x(n)(t)− (Tx)(t) = f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , n− 2,

x(n−1)(1) = 0.

(2.1)

Assertion 2.1. Let T : C[0, 1] → L[0, 1] be a linear bounded operator. If

vrai sup
t∈[0,1]

|(T1)(t)| < (n− 2)!n,

then problem (2.1) is uniquely solvable.

We can improve this assertion for positive operators T .

Lemma 2.1 ([3, Lemma 2.19], [4, Lemma 2], [5, Lemma 1]). Let a non-negative function p ∈ L[0, 1]
be given. Problem (2.1) is uniquely solvable for all positive operators T : C[0, 1] → L[0, 1] satisfied
the equality T1 = p if and only if the focal boundary value problem

x(n)(t) = p1(t)x(t1) + p2(t)x(t2), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , n− 2,

x(n−1)(1) = 0

has only the trivial solution for all points t1 ≤ t2, t1, t2 ∈ [0, 1] and for all non-negative functions
p1, p2 ∈ L[0, 1] such that p1 + p2 = p.

Define
k(t) ≡ 1 + P

(
1− t

n

) tn−1

(n− 1)!
, t ∈ [0, 1],

where P is a constant,

G1(t, s) ≡


tn−1 − (t− s)n−1

(n− 1)!
, 1 ≥ t ≥ s ≥ 0,

tn−1

(n− 1)!
, 1 ≥ s > t ≥ 0.
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Theorem 2.1. Let a non-negative number P be given. Then the focal boundary value problem
(2.1) is uniquely solvable for all positive operators T : C[0, 1] → L[0, 1] such that

vrai sup
t∈[0,1]

(T1)(t) ≤ P

if and only if the inequality

k(t2) + P

1∫
s

(
G1(t2, τ)k(t1)−G1(t1, τ)k(t2)

)
dτ > 0

is fulfilled for all 0 ≤ t1 ≤ t2 ≤ 1 and all s ∈ (0, t2].

We obtain some sufficient solvability conditions for the simplest functional differential equations
with one concentrated argument.

Corollary 2.1. Let p ∈ L[0, 1] be a non-negative coefficient, h : [0, 1] → [0, 1] be a measurable
deviated argument.

Then for n = 2, the focal boundary value problem
x(n)(t) = p(t)x(h(t)) + f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , n− 2,

x(n−1)(1) = 0

(2.2)

is uniquely solvable if
vrai sup
t∈[0,1]

p(t) ≤ 16, p(t) ̸≡ 16,

where the constant “16” is unimprovable.
For n = 3, problem (2.2) is uniquely solvable if

vrai sup
t∈[0,1]

p(t) ≤ 58.

For n = 4, problem (2.2) is uniquely solvable if

vrai sup
t∈[0,1]

p(t) ≤ 270.

Remark 2.1. It seems that for n = 2 the best constants “8” and “16” in Theorem 1.2 and
Corollary 2.1 are known (see, for example, [3, p. 109] for integral restriction). However, as we
know, for higher-order functional differential equations these results are new.
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