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For a given positive integer n let us denote by Mn the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1)

defined on the time semi-axis R+ with continuous bounded coefficients. Let λ1(A) 6 · · · 6 λn(A)
denote the Lyapunov exponents [6, p. 561], [1, p. 38] of the system (1). Besides, we denote by Rn

the subclass of the class Mn consisting of Lyapunov regular systems [6, p. 563], [1, p. 61]. In what
follows, we identify the system (1) with its defining function A( · ) and therefore write A ∈ Mn or
A ∈ Rn.

In the paper [7] O. Perron constructed an example of a system A ∈ M2 with negative Lyapunov
exponents for which there exists an exponentially decaying perturbation Q : R+ → R2×2 such that
the largest Lyapunov exponent of the perturbed system

ẋ = (A(t) +Q(t))x, x ∈ R2, t ∈ R+,

is positive. Put differently, the Lyapunov exponents, which are responsible for the stability, are
not stable themselves (even under those perturbations of a system’s coefficient matrix that decay
exponentially).

As a result of Perron’s example the problem naturally arises of finding wide enough subclasses
of the class Mn consisting of the systems whose Lyapunov exponents are invariant under vanish-
ing at infinity perturbations of the coefficient matrix. It was a long-standing conjecture that the
class Rn of Lyapunov regular systems possesses the desired property. The conjecture was based
essentially on the fundamental result by Lyapunov which claims that if a nonlinear system (with
natural restrictions on the right-hand side) has a regular first approximation system and the latter
is conditionally exponentially stable, then so is the zero solution of the original system (with the
same dimension of the stable manifold and asymptotic exponent) [6, pp. 577–579]. Nevertheless, in
the paper [8] R. E. Vinograd provided an example of a system A ∈ R2 whose Lyapunov exponents
change under some vanishing at infinity perturbation of its coefficient matrix (the Lyapunov expo-
nents of a regular system are invariant under exponentially decaying perturbations of its coefficient
matrix, which is implied by Bogdanov–Grobman theorem [5, p. 188]).

Let M be a metric space. Let us introduce the classes En(M) and Zn(M) of jointly continuous
matrix-valued functions Q( · , · ) : R+ × M → Rn×n. The class En(M) consists of the functions
Q( · , · ) exponentially decaying as t → +∞ with a uniform exponent with respect to µ ∈ M :

lim
t→+∞

t−1 ln ∥Q(t, µ)∥ < const < 0,
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and the class Zn(M) consists of the functions Q( · , · ) vanishing at infinity uniformly in µ ∈ M :

lim
t→+∞

sup
µ∈M

∥Q(t, µ)∥ = 0.

Generalizing the situation considered in examples of Perron and Vinograd, for each system
A ∈ Mn, let us define the class Pn(A;M) consisting of the families

ẋ = (A(t) +Q(t, µ))x, x ∈ Rn, t ∈ R+, (2)

of linear differential systems, where µ ∈ M is a parameter and Q( · , · ) ∈ En(M). Next, for each
A ∈ Rn we define the class Vn(A;M) to consist of those families (2) in which Q( · , · ) ∈ Zn(M).
Therefore, fixing a value of the parameter µ ∈ M in the family (2) we obtain a linear differential
system with continuous coefficients bounded on the semi-axis. Let λ1(µ;A+Q) 6 · · · 6 λn(µ;A+Q)
stand for the Lyapunov exponents of this system. Thus for each k = 1, n we get the function
λk( · ;A) : M → R, which is called the k-th Lyapunov exponent of the family (2), and the vector
function Λ( · ;A+Q) : M → Rn defined by Λ(µ;A+Q) = (λ1(µ;A+Q), . . . , λn(µ;A+Q)), which
is called the spectrum of the Lyapunov exponents of the family (2).

We state the problems to be solved as follows: for each n ∈ N and every metric space M
completely describe the classes of vector functions

Pn(M) =
{
Λ( · ;A+Q) | A ∈ Mn, Q ∈ En(M)

}
,

Vn(M) =
{
Λ( · ;A+Q) | A ∈ Rn, Q ∈ Zn(M)

}
.

Solutions to these problems will contain as special cases examples of Perron and Vinograd, respec-
tively. If n = 1, then the descriptions of the above classes immediately follow from the definition
of the Lyapunov exponent – for any metric space M both the classes P1(M) and V1(M) coincide
with the class of constant functions M → R. Therefore, from now on, we assume that n > 2.

Let a vector function f( · ) = (f1( · ), . . . , fn( · )) : M → Rn belong to the class Pn(M) or to the
class Vn(M). Let us state three properties of the vector function f( · ) that it must satisfy (below
these properties are numbered as 1), 2), 3)). One of the properties is trivially implied by the very
definition of this vector function: 1) for every µ ∈ M the inequalities f1(µ) 6 · · · 6 fn(µ) hold.
Another property follows from the fact that a matrix-valued function A is bounded on the time
semi-axis and for every µ ∈ M , a perturbation matrix Q( · , µ) vanishes at infinity: 2) the vector
function f( · ) is bounded on M . For example, |Λ(µ;A + Q)| 6 n sup{∥A(t)∥ | t ∈ R+} for all
µ ∈ M . Before stating the third property let us recall that a function g : M → R is said [4, p. 267]
to be of the class (∗, Gδ) if for each r ∈ R the preimage g−1([r,+∞)) of the half-interval [r,+∞)
is a Gδ-set of the metric space M . As follows from the paper [2], in which a complete description
is obtained for the spectra of the Lyapunov exponents of general parametric families of linear
differential systems continuous in the parameter uniformly in t ∈ R+, the property 3) is true: the
components fk( · ) of the vector function f( · ) are of the class (∗, Gδ).

Theorem 1. Let M be a metric space, n > 2 an integer, and a vector function f : M → Rn satisfy
the properties 1)–3). Then there exist a system A ∈ Mn and a matrix-valued function Q ∈ En(M)
such that the spectrum of the Lyapunov exponents of the family (2) coincides with the function f ,
i.e. Λ(µ;A+Q) = f(µ) for all µ ∈ M .

Theorem 2. Let M be a metric space, n > 2 an integer, and a vector function f : M → Rn satisfy
the properties 1)–3). Then there exist a Lyapunov regular system A ∈ Rn and a matrix-valued
function Q ∈ Zn(M) such that the spectrum of the Lyapunov exponents of the family (2) coincides
with the function f , i.e. Λ(µ;A+Q) = f(µ) for all µ ∈ M .
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Thus, from the said above it follows that the classes Pn(M) and Vn(M) are identical, and their
common complete description is contained in the following

Theorem 3. For any n > 2 and every metric space M , a vector function (f1, . . . , fn) : M → Rn

belongs to the class Pn(M) (to the class Vn(M)) if and only if it satisfies the properties 1)–3).
For each metric space M the class P1(M) (the class V1(M) coincides with the class of constant
functions M → R.

Note that if M is a segment of the real line, then in Theorems 1–3 above one can choose a
matrix-valued function Q( · , · ) : R+ ×M → Rn×n to be analytical in µ ∈ M for each t ∈ R+.

Recall that a subset of a metric space M is said to be an Fσδ-set if it can be expressed as
countable intersection of Fσ sets in M . The latter, in turn, are those which can be represented as
countable unions of closed sets in M [4, p. 96]. Combining Theorem 2 above with [3, Corollary 2]
we arrive at the following

Corollary. Let an integer n > 2 and a metric space M be given. Then for any Fσδ-set S in M
there exist a Lyapunov regular system A ∈ Rn and a matrix-valued function Q ∈ Zn(M) such that
S is the set of those µ ∈ M for which the system (2) is Lyapunov regular.
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