On the Well-Posedness of the Cauchy Problem for High Order Ordinary Linear Differential Equations

Besarion Anjafaridze

Sokhumi State University, Tbilisi, Georgia E-mail: Besaanjafaridze@gmail.com

Malkhaz Ashordia^{1, 2}

¹A. Razmadze Mathematical Institute of I. Javakhishvili Tbiisi State University, Tbilisi, Georgia;

²Sokhumi State University, Tbilisi, Georgia

E-mails: ashord@rmi.ge; malkhaz.ashordia@tsu.ge

We consider the question on the well-posedness of the Cauchy problem

$$u^{(n)} = \sum_{l=1}^{n} p_l(t)u^{(l-1)} + p_0(t) \text{ for } t \in I,$$
(1)

$$u^{(i-1)}(t_0) = c_{i0} \quad (i = 1, \dots, n),$$
 (2)

where $p_l \in L_{loc}(I; \mathbb{R})$ $(l = 0, ..., n), t_0 \in I$ and $c_{io} \in \mathbb{R}$ (i = 1, ..., n), and I is an arbitrary interval from \mathbb{R} .

By $AC(I;\mathbb{R})$ we denote the set of all absolutely continuous functions defined on I.

Let u_0 ($u^{(i-1)} \in AC(I; \mathbb{R})$, i = 1, ..., n) be the unique solution of the Cauchy problem (1), (2). Along with problem (1), (2) we consider the sequence of problems

$$u^{(n)} = \sum_{l=1}^{n} p_{lk}(t)u^{(l-1)} + p_{0k}(t) \text{ for } t \in I,$$
(1_k)

$$u^{(i-1)}(t_k) = c_{ik} \quad (i = 1, \dots, n)$$
 (2_k)

(k = 1, 2, ...), where $p_{lk} \in L(I; \mathbb{R})$ (l = 0, ..., n), $t_k \in I$ and $c_{ik} \in \mathbb{R}$ (i = 1, ..., n; k = 1, 2, ...). Let

$$\lim_{k \to +\infty} t_k = t_0. \tag{3}$$

Definition 1. We say that the sequence $(p_{lk}, \ldots, p_{nk}, p_{0k}; t_k)$ $(k = 1, 2, \ldots)$ belongs to the set $S(p_1, \ldots, p_n, p_0; t_0)$ if for every $c_{i0} \in \mathbb{R}$ $(i = 1, \ldots, n)$ and a sequence $c_{ik} \in \mathbb{R}$ $(i = 1, \ldots, n; k = 1, 2, \ldots)$, satisfying the condition

$$\lim_{k \to +\infty} c_{ik} = c_{i0} \quad (i = 1, \dots, n), \tag{4}$$

the condition

$$\lim_{k \to +\infty} u_k^{(i-1)}(t) = u_0^{(i-1)}(t) \quad (i = 1, \dots, n)$$
 (5)

holds uniformly on I, where u_k is the unique solution of the Cauchy problem $(1_k), (2_k)$ for any natural k.

Along with equations (1) and (1_k) (k = 1, 2, ...) we consider the corresponding homogeneous equations

$$u^{(n)} = \sum_{l=1}^{n} p_l(t)u^{(i-1)} \text{ for } t \in I$$
 (1₀)

and

$$u^{(n)} = \sum_{l=1}^{n} p_{lk}(t)u^{(i-1)} \text{ for } t \in I$$
 (10k)

 $(k = 1, 2, \dots).$

If the functions v_i (i = 1, ..., n) are such that $v_i^{(l-1)}$ (i, l = 1, ..., n) are absolutely continuous, then by $w_0(v_1, ..., v_n)(t) = \det((v_i^{(l-1)}(t))_{i,l=1}^n)$ we denote so called Wronskii's determinant, and by $w_{il}(v_1, ..., v_n)(t)$ (i, l = 1, ..., n) we denote a cofactor of the *il*-element of $w_0(v_1, ..., v_n)$.

Let u_l $(l=1,\ldots,n)$ and u_{lk} $(l=1,\ldots,n; k=1,2,\ldots)$ be the fundamental systems of solutions of the homogeneous systems $(1)_0$ and (2_{0k}) $(k=1,2,\ldots)$, respectively.

Theorem 1. Let $p_l \in L_{loc}(I; \mathbb{R})$ (l = 0, ..., n), $p_{lk} \in L_{loc}(I; \mathbb{R})$ (l = 0, ..., n; k = 1, 2, ...), $t_k \in I$ (k = 0, 1, ...) and $c_{lk} \in \mathbb{R}$ (l = 1, ..., n; k = 0, 1, ...) be such that conditions (3), (4) and

$$\lim_{k \to +\infty} \sup_{t \in I, t \neq t_k} \left\{ \sum_{l=1}^n \left| \int_{t_k}^t (p_{lk}(\tau) - p_l(\tau)) d\tau \right| \left(1 + \sum_{l=1}^n \left| \int_{t_k}^t |p_{lk}(\tau) - p_l(\tau)| d\tau \right| \right) \right\} = 0$$
 (6)

hold. Then

$$\lim_{k \to +\infty} \sup_{t \in I, t \neq t_k} \sum_{i=1}^n \left| u_k^{(i-1)}(t) - u_0^{(i-1)}(t) \right| = 0, \tag{7}$$

where u_k is the unique solution of the Cauchy problem $(1_k), (2_k)$ for any natural k.

Below we give some sufficient conditions, as well necessary and sufficient conditions guaranteeing the inclusion

$$((p_{lk}, \dots, p_{nk}, p_{0k}; t_k))_{k=1}^{+\infty} \in \mathcal{S}(p_1, \dots, p_n, p_0; t_0).$$
 (8)

Theorem 2. Let $p_l \in L(I; \mathbb{R})$ (l = 0, ..., n), $p_{lk} \in L(I; \mathbb{R})$ (l = 0, ..., n; k = 1, 2, ...) and $t_k \in I$ (k = 0, 1, ...) be such that condition (3) holds. Then inclusion (8) holds if and only if there exists a sequence of functions h_{il} , $h_{ilk} \in AC(I; \mathbb{R})$ (i, l = 1, ..., n; k = 0, 1, ...) such that the conditions

$$\inf \{ \left| \det((h_{il}(t))_{i,l=1}^{n}) \right| : t \in I \} > 0$$
(9)

and

$$\lim_{k \to +\infty} \sup_{i,l=1} \int_{I} \left| h'_{ilk}(t) + h_{1l-1k}(t) \operatorname{sgn}(l-1) + h_{1nk}(t) p_l(t) \right| dt < +\infty$$
 (10)

hold, and the conditions

$$\lim_{k \to +\infty} h_{ilk}(t) = h_{il}(t) \ (i, l = 1, \dots, n)$$
 (11)

and

$$\lim_{k \to +\infty} \int_{t_{i}}^{t} h_{ink}(\tau) p_{lk}(\tau) d\tau = \int_{t_{0}}^{t} h_{in}(\tau) p_{l}(\tau) d\tau \quad (i = 1, \dots, n; \ l = 0, \dots, n)$$

hold uniformly on I.

Theorem 3. Let $p_l \in L(I; \mathbb{R})$ (l = 0, ..., n), $p_{lk} \in L_{loc}(I; \mathbb{R})$ (l = 0, ..., n; k = 1, 2, ...) and $t_k \in I$ (k = 0, 1, ...) be such that condition (3) holds. Then inclusion (8) holds if and only if the conditions

$$\lim_{k \to +\infty} u_{lk}^{(i-1)}(t) = u_l^{(i-1)}(t) \quad (i, l = 1, \dots, n)$$

and

$$\lim_{k \to +\infty} \int_{a_*}^{t} \frac{w_{in}(u_{1k}, \dots, u_{nk})(\tau)}{w_0(u_{1k}, \dots, u_{nk})(\tau)} \, p_{0k}(\tau) \, d\tau = \int_{a_*}^{t} \frac{w_{in}(u_1, \dots, u_n)(\tau)}{w_0(u_1, \dots, u_n)(\tau)} \, p_0(\tau) \, d\tau \quad (i = 1, \dots, n)$$
 (12)

hold uniformly on I.

Theorem 4. Let $p_l \in L(I; \mathbb{R})$ (l = 0, ..., n), $p_{lk} \in L_{loc}(I; \mathbb{R})$ (l = 0, ..., n; k = 1, 2, ...), $t_k \in I$ (k = 0, 1, ...) and $c_{lk} \in \mathbb{R}$ (l = 1, ..., n; k = 0, 1, ...) be such that the conditions (3), (4) and

$$\limsup_{k \to +\infty} \int_{I} \|p_{lk}(t)\| dt < +\infty \quad (l = 1, \dots, n)$$

hold, and the condition

$$\lim_{k \to +\infty} \int_{t_k}^t p_{lk}(\tau) d\tau = \int_{t_0}^t p_l(\tau) d\tau \quad (l = 0, \dots, n)$$

holds uniformly on I. Then condition (5) holds uniformly on I, where u_k is the unique solution of the Cauchy problem $(1_k), (2_k)$ for any natural k.

Corollary 1. Let $p_l \in L(I; \mathbb{R})$ (l = 0, ..., n), $p_{lk} \in L(I; \mathbb{R})$ (l = 0, ..., n; k = 1, 2, ...) and $t_k \in I$ (k = 0, 1, ...) be such that conditions (3), (4) and (10) hold, and conditions (11) and

$$\lim_{k \to +\infty} \int_{t_k}^{t} h_{ink}(\tau) p_{lk}(\tau) d\tau = \int_{t_0}^{t} p_l^*(\tau) d\tau \quad (i = 1, \dots, n; \ l = 0, \dots, n)$$

hold uniformly on I, where $p_l^* \in L(I;\mathbb{R})$ (l = 0, ..., n); $h_{il}, h_{ilk} \in AC(I;\mathbb{R})$ (i, l = 1, ..., n; k = 0, 1, ...). Then the inclusion

$$((p_{lk},\ldots,p_{nk},p_{0k};t_k))_{k=1}^{+\infty} \in \mathcal{S}(p_1-p_1^*,\ldots,p_n-p_n^*,p_0-p_0^*;t_0)$$

holds.

Remark 1. In Theorem 2 and Corollary 1, without loss of generality we can assume that $h_{ii}(t) \equiv 1$ and $h_{il}(t) \equiv 0 \ (i \neq l; i, l = 1, ..., n)$. So condition (9) is valid evidently.

Remark 2. If n=2 in Theorem 3, then condition (12) has the form

$$\lim_{k \to +\infty} \int_{a_*}^t \frac{u'_{1k}(\tau)p_{0k}(\tau)}{u_{1k}(\tau)u'_{2k}(\tau) - u_{2k}(\tau)u'_{1k}(\tau)} d\tau = \int_{a_*}^t \frac{u'_{1}(\tau)p_{0}(\tau)}{u_{1}(\tau)u'_{2}(\tau) - u_{2}(\tau)u'_{1}(\tau)} d\tau,$$

$$\lim_{k \to +\infty} \int_{a_*}^t \frac{u_{1k}(\tau)p_{0k}(\tau)}{u_{1k}(\tau)u'_{2k}(\tau) - u_{2k}(\tau)u'_{1k}(\tau)} d\tau = \int_{a_*}^t \frac{u_{1}(\tau)p_{0}(\tau)}{u_{1}(\tau)u'_{2}(\tau) - u_{2}(\tau)u'_{1}(\tau)} d\tau.$$

In the last equalities we can take u_{2k} instead of u_{1k} (k = 1, 2, ...), and u_2 instead of u_1 .

For the proof we use the well-known concept. It is well-known that if the function u is a solution of problem (1), (2), then the vector-function $x = (x_i)_{i=1}^n$, $x_i = u^{(i-1)}$ (i = 1, ..., n), will be a solution of the Cauchy problem for the linear system of ordinary differential equations

$$\frac{dx}{dt} = P(t) x + q(t),$$
$$x(t_0) = c_0,$$

where the matrix- and vector-functions $P(t) = (p_{il}(t))_{i,l=1}^n$ and $q(t) = (q_i(t))_{i=1}^n$ are defined, respectively, by

$$p_{il}(t) \equiv 0, \quad p_{i\,i+1} \equiv 1 \quad (l \neq i+1; \ i=1,\ldots,n-1; \ l=1,\ldots,n),$$

 $p_{nl}(t) \equiv p_l(t) \quad (l=1,\ldots,n);$
 $q_i(t) \equiv 0 \quad (i=1,\ldots,n-1), \quad q_n(t) \equiv p_0(t),$

and $c_0 = (c_{i0})_{i=1}^n$.

Analogously, problem (1_k) , (2_k) can be rewriten in the form of the last type problem for every natural k. So, using the results contained in [1] and [2], we get the results given above.

References

- [1] M. Ashordia, Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. *Czechoslovak Math. J.* **46(121)** (1996), no. 3, 385–404.
- [2] M. Ashordia, Sh. Akhalaia and N. Kekelia, On necessary and sufficient conditions for stability of linear systems of generalized ordinary differential equations. *Mem. Differential Equations Math. Phys.* **46** (2009), 115–128.