On One Inverse Problem for the Linear Controlled Neutral Differential Equation

T. Tadumadze

Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia; I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia E-mail: tamaz.tadumadze@tsu.ge

A. Nachaoui

University of Nantes, J. Leray Laboratory of Mathematics, Nantes, France E-mail: nachaoui@math.cnrs.fr

F. Aboud

University of Diyala, College of Science, Diyala, Iraq E-mail: fatimaaboud@yahoo.com

Let $t_0 < t_1$ be fixed numbers and let $x_0 \in \mathbb{R}^n$ be a fixed vector. By Φ and Ω we denote, respectively, the sets of measurable initial functions $\varphi(t) = (\varphi^1(t), \dots, \varphi^n(t))^T$, $t \in [t_0 - \tau, t_0]$, $\varphi^i(t) \in [-1, 1]$, $i = \overline{1, n}$ and control functions $u(t) = (u^1(t), \dots, u^r(t))^T$, $t \in [t_0, t_1]$, $u^i(t) \in [-1, 1]$, $i = \overline{1, r}$.

To each element $w = (\varphi(t), g(t), u(t)) \in W = \Phi^2 \times \Omega$ we assign the linear neutral differential equation

$$\dot{x}(t) = Ax(t) + Bx(t-\tau) + C\dot{x}(t-\tau) + Du(t), \ t \in [t_0, t_1]$$
(1)

with the initial condition

$$x(t) = \varphi(t), \quad \dot{x}(t) = g(t), \quad t \in [t_0 - \tau, t_0), \quad x(t_0) = x_0, \tag{2}$$

where A, B, C, D are given constant matrices with appropriate dimensions.

Definition 1. Let $w = (\varphi(t), g(t), u(t)) \in W$. A function $x(t) = x(t; w) \in \mathbb{R}^n, t \in [t_0 - \tau, t_1]$ is called a solution of differential equation (1) with the initial condition (2) if x(t) satisfies the initial condition (2), is absolutely continuous on the interval $[t_0, t_1]$ and satisfies equation (1) almost everywhere.

The inverse problem: Let $y \in Y = \{y \in \mathbb{R}^n : \exists w \in W, x(t_1; w) = y\}$ be a given vector. Find element $w \in W$ such that the following condition holds $x(t_1; w) = y$. The vector y, as rule, by distinct error is beforehand given. Thus instead of the vector y we have \hat{y} (so called an observed vector) which is an approximation to the y and, in general, $\hat{y} \notin Y$. Therefore it is natural to change posed inverse problem by the following approximate problem.

The approximate inverse problem: Find an element $w \in W$ such that the deviation

$$\frac{1}{2} |x(t_1; w) - \hat{y}|^2 = \frac{1}{2} \sum_{i=1}^n \left[x^i(t_1; w) - \hat{y}^i \right]^2$$

takes the minimal value.

It is clear that the approximate inverse problem is equivalent to the following optimization problem:

$$\dot{x}(t) = Ax(t) + Bx(t-\tau) + C\dot{x}(t-\tau) + Du(t), \ t \in [t_0, t_1],$$
(3)

$$x(t) = \varphi(t), \ \dot{x}(t) = g(t), \ t \in [t_0 - \tau, t_0), \ x(t_0) = x_0,$$
(4)

$$J(w) = \frac{1}{2} |x(t_1; w) - \hat{y}|^2 \longrightarrow \min, \ w \in W.$$
(5)

The problem (3)–(5) is called the optimal control problem corresponding to the inverse problem.

Theorem 1 ([4]). There exists an optimal element $w_0 = (\varphi_0(t), g_0(t), u_0(t))$ for the problem (3)–(5), i.e. $J(w_0) = \inf_{w \in W} J(w)$.

Regularization of the optimal control problem (3)-(5). Now we consider the regularized optimal control problem

$$\dot{x}(t) = Ax + Bx(t - \tau) + C\dot{x}(t - \tau) + Du(t),$$
(6)

$$x(t) = \varphi(t), \ \dot{x}(t) = g(t), \ t \in [t_0 - \tau, t_0), \ x(t_0) = x_0,$$
(7)

$$J(w;\delta) = \frac{1}{2} |x(t_1;w) - \hat{y}|^2 + \delta_1 \int_{t_0}^{t_1} \alpha(t) |\varphi(t-\tau)|^2 dt + \delta_2 \int_{t_0}^{t_1} \alpha(t) |g(t-\tau)|^2 dt + \delta_3 \int_{t_0}^{t_1} |u(t)|^2 dt \longrightarrow \min, \ w \in W, \quad (8)$$

where $\delta = (\delta_1, \delta_2, \delta_3)$, $\delta_i > 0$, i = 1, 2, 3 and $\alpha(t)$ is the characteristic function of the interval $[t_0, t_0 + \tau]$.

Theorem 2. For every δ the problem (6)–(8) has the unique optimal element $w_{\delta} = (\varphi_{\delta}(t), g_{\delta}(t), u_{\delta}(t))$ and

$$\lim_{\delta \to 0} J(w_{\delta}; \delta) = J(w_0).$$

It is natural that for sufficiently small δ the element w_{δ} can be considered as an approximate optimal element of the problem (3)–(5) and consequently as an approximate solution of the approximate inverse problem.

Theorem 3. For the optimality of an element w_{δ} it suffices to fulfill the conditions:

$$\psi(t+\tau)B\varphi_{\delta}(t) - \delta_1|\varphi_{\delta}(t)|^2 = \max_{\varphi \in [-1,1]^n} \left[\psi(t+\tau)B\varphi - \delta_1|\varphi|^2\right], \ t \in [t_0 - \tau, t_0],$$
(9)

$$\psi(t+\tau)Cg_{\delta}(t) - \delta_2|g_{\delta}(t)|^2 = \max_{g \in [-1,1]^n} \left[\psi(t+\tau)Cg - \delta_2|g|^2\right], \ t \in [t_0 - \tau, t_0],$$
(10)

$$\psi(t)Du_{\delta}(t) - \delta_3 |u_{\delta}(t)|^2 = \max_{u \in [-1,1]^r} \left[\psi(t)Du - \delta_3 |u|^2\right], \ t \in [t_0, t_1].$$
(11)

Here $\psi(t)$, in general, is discontinuous at points $t_1 - k\tau$, k = 1, 2, ... and $(\psi(t), \chi(t))$ is a solution of the system

$$\begin{cases} \dot{\chi}(t) = -\psi(t)A - \psi(t+\tau)B, \\ \psi(t) = \chi(t) + C\psi(t+\tau) \end{cases}$$
(12)

with the initial condition

$$\psi(t_1) = \chi(t_1) = \hat{y} - x(t_1; w_\delta), \quad \psi(t) = 0, \quad t > t_1.$$
(13)

Let

$$\psi(t+\tau)B := (\varrho^1(t), \dots, \varrho^n(t)), \quad \psi(t+\tau)C := (\sigma^1(t), \dots, \sigma^n(t))$$
$$\psi(t)D := (\gamma^1(t), \dots, \gamma^r(t)).$$

Using these notations, from (9)-(11), respectively, it follow

$$\begin{split} \varrho^{i}(t)\varphi^{i}_{\delta}(t) - \delta_{1}(\varphi^{i}_{\delta}(t))^{2} &= \max_{\varphi^{i}\in[-1,1]} \left[\varrho^{i}(t)\varphi^{i} - \delta_{1}(\varphi^{i})^{2} \right], \quad i = \overline{1, n}, \\ \sigma^{i}(t)g^{i}_{\delta}(t) - \delta_{2}(g^{i}_{\delta}(t))^{2} &= \max_{g^{i}\in[-1,1]} \left[\sigma^{i}(t)g^{i} - \delta_{2}(g^{i})^{2} \right], \quad i = \overline{1, n}, \\ \gamma^{i}(t)u^{i}_{\delta}(t) - \delta_{3}(u^{i}_{\delta}(t))^{2} &= \max_{u^{i}\in[-1,1]} \left[\gamma^{i}(t)u^{i} - \delta_{3}(u^{i})^{2} \right], \quad i = \overline{1, r}. \end{split}$$

From the last relations we get

$$\varphi_{\delta}^{i}(t) = \begin{cases} -1 & \text{if } \frac{\varrho^{i}(t)}{2\delta_{1}} \leq -1, \\ \frac{\varrho^{i}(t)}{2\delta_{1}} & \text{if } \frac{\varrho^{i}(t)}{2\delta_{1}} \in [-1,1], \quad g_{\delta}^{i}(t) = \begin{cases} -1 & \text{if } \frac{\sigma^{i}(t)}{2\delta_{2}} \leq -1, \\ \frac{\sigma^{i}(t)}{2\delta_{3}} & \text{if } \frac{\sigma^{i}(t)}{2\delta_{2}} \in [-1,1], \\ 1 & \text{if } \frac{\varphi^{i}(t)}{2\delta_{2}} \geq 1, \end{cases} \\ u_{\delta}^{i}(t) = \begin{cases} -1 & \text{if } \frac{\gamma^{i}(t)}{2\delta_{3}} \leq -1, \\ \frac{\gamma^{i}(t)}{2\delta_{2}} & \text{if } \frac{\gamma^{i}(t)}{2\delta_{3}} \leq -1, \\ \frac{\gamma^{i}(t)}{2\delta_{2}} & \text{if } \frac{\gamma^{i}(t)}{2\delta_{3}} \in [-1,1], \\ 1 & \text{if } \frac{\gamma^{i}(t)}{2\delta_{3}} \geq 1. \end{cases}$$

Iterative process for the approximate solution of the regularization problem (6)–(8). Let $\varphi_1(t) \in \Phi$, $g_1(t) \in \Phi$ and $u_1(t) \in \Omega$ be starting approximation of the initial functions and the control function. We construct the sequences $\{x_k(t)\}, \{\psi_k(t)\}, \{\varphi_k(t)\}, \{g_k(t)\}, \{u_k(t)\}$ by the following iteration process:

1) for given $\varphi_k(t), g_k(t) \in \Phi$ and $u_k(t) \in \Omega$ find $x_k(t)$: the solution of the differential equation

$$\dot{x}(t) = Ax(t) + Bx(t-\tau) + C\dot{x}(t-\tau) + Du_k(t), \ t \in [t_0, t_1]$$

with the initial condition

$$x(t) = \varphi_k(t), \dot{x}(t) = g_k(t), \ t \in [t - \tau, t_0), \ x(t_0) = x_0;$$

- 2) if a stopping criterion is satisfied stop, stopping criterion can be for example the value of $J(w_k; \delta)$ is less than before given number ε , where $w_k = (\varphi_k(t), g_k(t), u_k(t))$;
- 3) find $(\psi_k(t), \chi_k(t))$: the solution of the differential equation (12) with the initial condition

$$\psi(t_1) = \chi(t_1) = \widehat{y} - x(t_1; w_k)\psi(t) = 0, \ t > t_1;$$

4) put k := k + 1 and find the next iterates $\varphi_{k+1}(t)$, $g_{k+1}(t)$ and $u_{k+1}(t)$

$$\begin{split} \varphi_{k+1}^{i}(t) = \begin{cases} -1 & \text{if } \frac{\varrho_{k}^{i}(t)}{2\delta_{1}} \leq -1, \\ \frac{\varrho_{k}^{i}(t)}{2\delta_{1}} & \text{if } \frac{\varrho_{k}^{i}(t)}{2\delta_{1}} \in [-1,1], \\ 1 & \text{if } \frac{\varrho_{k}^{i}(t)}{2\delta_{1}} \geq 1, \end{cases} = \begin{cases} -1 & \text{if } \frac{\sigma_{k}^{i}(t)}{2\delta_{2}} \leq -1, \\ \frac{\sigma_{k}^{i}(t)}{2\delta_{2}} & \text{if } \frac{\sigma_{k}^{i}(t)}{2\delta_{2}} \in [-1,1], \\ 1 & \text{if } \frac{\sigma_{k}^{i}(t)}{2\delta_{2}} \geq 1, \end{cases} \\ u_{k+1}^{i}(t) = \begin{cases} -1 & \text{if } \frac{\gamma_{k}^{i}(t)}{2\delta_{3}} \leq -1, \\ \frac{\gamma_{k}^{i}(t)}{2\delta_{3}} & \text{if } \frac{\gamma_{k}^{i}(t)}{2\delta_{3}} \in [-1,1], \\ 1 & \text{if } \frac{\gamma_{k}^{i}(t)}{2\delta_{3}} \geq 1. \end{cases} \end{split}$$

Here

$$\psi_k(t+\tau)B := (\varrho_k^1(t), \dots, \varrho_k^n(t)), \quad \psi_k(t+\tau)C := (\sigma_k^1(t), \dots, \sigma_k^n(t)),$$
$$\psi_k(t)D := (\gamma_k^1(t), \dots, \gamma_k^r(t));$$

5) go to 1).

Theorem 4. The following relations are valid:

$$\lim_{k \to \infty} \chi_k(t) = \chi_{\delta}(t), \quad \lim_{k \to \infty} x_k(t) = x_{\delta}(t) \quad uniformly \text{ for } t \in [t_0, t_1],$$
$$\lim_{k \to \infty} \sup_{t \in [t_0, t_1]} \psi_k(t) = \psi_{\delta}(t), \quad \lim_{k \to \infty} \varphi_k(t) = \varphi_{\delta}(t), \quad \lim_{k \to \infty} g_k(t) = g_{\delta}(t)$$

weekly in the space $L_1([t_0 - \tau, t_0], \mathbb{R}^n)$, $\lim_{k \to \infty} u_k(t) = u_{\delta}(t)$ weekly in the space $L_1([t_0, t_1], \mathbb{R}^r)$. Moreover, $w_{\delta} = (\varphi_{\delta}(t), g_{\delta}(t), u_{\delta}(t))$ is the optimal element, $x_{\delta}(t) = x(t; w_{\delta}), (\psi_{\delta}(t), \chi_{\delta}(t))$ is the solution of the equation (12) with the initial condition (13).

Theorems 2-4 are proved on the basis of results obtained in [1-3].

References

- T. A. Tadumadze, Some Problems in the Qualitative Theory of Optimal Control. (Russian) Tbilis. Gos. Univ., Tbilisi, 1983.
- [2] T. Tadumadze, The maximum principle and existence theorem in the optimal problems with delay and non-fixed initial function. *Dokl. Semin. Inst. Prikl. Mat. im. I. N. Vekua* No. 22 (1993), 102–107 (1994).
- [3] T. Tadumadze, An inverse problem for some classes of linear functional differential equations. Appl. Comput. Math. 8 (2009), no. 2, 239–250.
- [4] T. Tadumadze and A. Nachaoui, On the existence of an optimal element in quasi-linear neutral optimal problems. Semin. I. Vekua Inst. Appl. Math. Rep. 40 (2014), 50–67.