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Let O ⊂ Rn be an open set and U ⊂ Rr be a convex compact set. Let hi2 > hi1 > 0, i = 1, s and
θk > · · · > θ1 > 0 be given numbers and n-dimensional function f(t, x, x1, . . . , xs, u, u1, . . . , uk),
(t, x, x1, . . . , xs, u, u1, . . . , uk) ∈ I × O1+s × U1+k satisfies the following conditions: for almost all
fixed t ∈ I = [a, b] the function f(t, · ) : I×O1+s×U1+k → Rn is continuous and continuously diffe-
rentiable in (x, x1, . . . , xs, u, u1, . . . , uk) ∈ O1+s×U1+k; for each fixed (x, x1, . . . , xs, u, u1, . . . , uk) ∈
O1+s×U1+k, the function f(t, x, x1, . . . , xs, u, u1, . . . , uk) and the matrices fx(t, · ), fxi(t, · ), i = 1, s
and fu(t, · ), fui(t, · ), i = 1, k are measurable on I; for any compact set K ⊂ O there exists a
function mK(t) ∈ L1(I, [0,∞)) such that∣∣f(t, x, x1, . . . , xs, u, u1, . . . , uk)∣∣

+ |fx(t, x, · )|+
s∑

i=1

|fxi(t, x, · )|+ |fu(t, x, · )|+
k∑

i=1

|fui(t, x, · )| ≤ mK(t)

for all (x, x1, . . . , xs, u, u1, . . . , uk) ∈ K1+s × U1+k and for almost all t ∈ I.
Furthermore, let Φ be the set of continuous functions φ(t) ∈ N , t ∈ I1 = [τ̂ , b], where τ̂ =

a − max{h12, . . . , hs2}, N ⊂ O is a convex compact set; Ω is the set of measurable functions
u(t) ∈ U , t ∈ I2 = [a− θk, b].

To each element v = (t0, t1, τ1, . . . , τs, φ, u) ∈ A = I × I × [h11, h12]× · · · × [hs1, hs2]×Φ×Ω on
the interval [t0, t1] we assign the delay controlled functional differential equation

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θk)

)
(1)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0]. (2)

The condition (2) is called continuous because always x(t0) = φ(t0).

Definition 1. Let ν = (t0, t1, τ1, . . . , τs, φ, u) ∈ A. A function x(t) = x(t; ν) ∈ O, t ∈ [τ̂ , t1],
t1 ∈ (t0, b] is called a solution of equation (1) with the continuous initial condition (2), or the
solution corresponding to ν and defined on the interval [τ̂ , t1] if it satisfies condition (2) and is
absolutely continuous on the interval [t0, t1] and satisfies equation (1) almost everywhere on [t0, t1].

Let the scalar-valued functions qi(t0, t1, τ1, . . . , τs, x0, x1), i = 0, l be continuously differentiable
on I2 × [h11, h12]× · · · × [hs1, hs2]×O2.
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Definition 2. An element ν = (t0, t1, τ1, . . . , τs, φ, u) ∈ A is said to be admissible if the correspon-
ding solution x(t) = x(t; ν) satisfies the boundary conditions

qi
(
t0, t1, τ1, . . . , τs, φ(t0), x(t1)

)
= 0, i = 1, l. (3)

Denote by A0 the set of admissible elements.

Definition 3. An element ν0 = (t00, t10, τ10, . . . , τs0, φ0, u0) ∈ A0 is said to be optimal if for an
arbitrary element ν ∈ A0 the inequality

q0
(
t00, t10, τ10, . . . , τs0, φ0(t00), x0(t10)

)
≤ q0

(
t0, t1, τ1, . . . , τs, φ(t0), x(t1)

)
(4)

holds. Here x0(t) = x(t; ν0) and x(t) = x(t; ν).

The problem (1)–(4) is called the optimal control problem with the continuous initial condition.

Theorem 1. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the following conditions hold:

1) the function φ0(t) is absolutely continuous and φ̇0(t) is bounded;

2) the function
f0(w) = f

(
w, u0(t), u0(t− θ1), . . . , u0(t− θk)

)
,

where w = (t, x, x1, . . . , xs) ∈ I ×O1+s is bounded on I ×O1+s;

3) there exists the finite limits

lim
t→t00−

φ̇0(t) = φ̇−
0 , lim

w→w0

f0(w) = f−0 , w ∈ (a, t00]×O1+s,

where
w0 =

(
t00, φ0(t00), φ0(t00 − τ10), . . . , φ0(t00 − τs0)

)
;

4) there exists the finite limit

lim
w→w1

f0(w) = f−1 , w ∈ (t00, t10]×O1+s,

w1 =
(
t10, x0(t10), x0(t10 − τ10), . . . , x0(t10 − τs0)

)
.

Then there exist a vector π = (π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ(t) =
(ψ1(t), . . . , ψn(t)) of the equation

ψ̇(t) = −ψ(t)f0x[t]−
s∑

i=1

ψ(t+ τi0)f0xi [t+ τi0], t ∈ [t00, t10], ψ(t) = 0, t > t10, (5)

where
f0x[t] = f0x

(
t, x0(t), x0(t− τ10), . . . , x0(t− τs0)

)
,

such that the following conditions hold;

5) the conditions for the moments t00 and t10:

πQ0t0 + (πQ0x0 + ψ(t00))φ̇
−
0 ≥ ψ(t00)f

−, πQ0t1 ≥ −ψ(t10)f−1 ,

where
Q0t0 =

∂

∂t0
Q
(
t00, t10, τ10, . . . , τs0, φ0(t00), x0(t10)

)
, Q = (q0, . . . , ql)T ;
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6) the conditions for the delays τi0, i = 1, s,

πQ0τi =

t10∫
t00

ψ(t)f0xi [t] ẋ0(t− τi0) dt, i = 1, s;

7) the maximum principle for the initial function φ0(t),

[Q0x0 + ψ(t00)]φ0(t00) +

s∑
i=1

t00∫
t00−τi0

ψ(t+ τi0)f0xi [t+ τi0]φ0(t) dt

= max
φ(t)∈Φ

{
[Q0x0 + ψ(t00)]φ(t00) +

s∑
i=1

t00∫
t00−τi0

ψ(t+ τi0)f0xi [t+ τi0]φ(t) dt

}
;

8) the linearized integral maximum principle for the control function u0(t),

t10∫
t00

ψ(t)
[
f0u[t]u0(t) +

k∑
i=1

f0ui [t]u0(t− θi)
]
dt

= max
u(t)∈Ω

t10∫
t00

ψ(t)
[
f0u[t]u(t) +

k∑
i=1

f0ui [t]u(t− θi)
]
dt;

9) the condition for the function ψ(t)

ψ(t10) = πQ0x1 .

Theorem 2. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the conditions 1), 2) of
Theorem 1 hold. Moreover, there exists the finite limits

lim
t→t00+

φ̇0(t) = φ̇+
0 , lim

w→w0

f0(w) = f+0 , w ∈ [t00, b)×O1+s,

lim
w→w1

f0(w) = f+1 , w ∈ [t10, b)×O1+s.

Then there exist a vector π = (π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ = (ψ1(t), . . . , ψn(t))
of the equation (5) such that the conditions 6)–9) hold. Moreover,

πQ0t0 + (πQ0x0 + ψ(t00))φ̇
+
0 ≤ ψ(t00)f

+
0 , πQ0t1 ≤ −ψ(t10)f+1 ,

Theorem 3. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the following conditions hold:
the function φ0(t) is continuously differentiable; the function f(t, x, x1, . . . , xs, u, u1, . . . , uk) is con-
tinuous; the function f(t, x, x1, . . . , xs, u0(t), u0(t−θ1), . . . , u0(t−θk)) is continuous at points t00, t10.
Then there exist a vector π = (π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ = (ψ1(t), . . . , ψn(t))
of the equation (5) such that the conditions 6)–9) hold. Moreover,

πQ0t0 + (πQ0x0 + ψ(t00))φ0(t00) = ψ(t00)f0[t00], πQ0t1 = −ψ(t10)f0[t10],

where
f0[t] = f

(
t, x0(t), x0(t− τ10), . . . , x0(t− τs0), u0(t), u0(t− θ1), . . . , u0(t− θk)

)
.

Theorem 3 is a corollary to Theorems 1 and 2. On the basis of variation formulas [2, 3] Theo-
rems 1, 2 are proved by the scheme given in [1, 4].
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