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Consider the differential equation

y′′′ = α0p(t)y| ln |y||σ, (1)

where α0 ∈ {−1; 1}, p : [a, ω) → (0,+∞) is a continuous function, σ ∈ R, ∞ < a < ω ≤ +∞. It
belongs to the equations class of the form

y′′′ = α0p(t)L(y), (2)

where α0 ∈ {−1; 1},p : [a, ω) → (0,+∞) is a continuous function, ∞ < a < ω ≤ +∞, function L
continuous and positive in a one-sided neighborhood ∆Y0 points Y0 (Y0 equals either 0 or ±∞).

For equations of the form (2) in the works of A. Stekhun and V. Evtukhov [4, 9] there was
investigated the question of the existence and asymptotic behavior when t → ω of the endangered
and unlimited solutions. The method of studying the equation of the form (2) assumed the presence
of significant linearity of the function L(y). In the equation (1) the function L(y) = y | ln |y||σ is in
some sense close to linear and requires improvements in research methods.

For second order equations of the form (1) in the works of V. Evtukhov and M. Jaber [1,3] there
was investigated the question of the existence and asymptotic behavior, when t ↑ ω all, so-called
Pω(λ0)-solution.

Solution y of the equation (1), specified on the interval [ty, w) ⊂ [a, ω) is said to be Pω(λ0)-
solution, if it satisfies the following conditions:

lim
t↑ω

y(k)(t) =

{
or 0,

or ±∞,
(k = 0, 1, 2), lim

t↑ω

[y′′(t)]2

y′′′(t)y′(t)
= λ0 (3)

Earlier in the articles [6–8] were obtained the results in the case, when λ0 ∈ R \ {0,−1, 12}. The
goal of the work to establish existence conditions for the equation (1) of Pω(±∞)-solutions and also
asymptotic representations, when t ↑ ω such solutions and their derivative to the second order.

We introduce the necessary notation for further, assuming

q(t) = p(t)π3
ω(t) | lnπ2

ω(t)|σ, Q(t) =

t∫
a

p(τ)π2
ω(τ) | lnπ2

ω(t)|σ dτ,

where

πω(t) =

{
t, if w = +∞,

t− ω, if w < +∞.
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Theorem 1. For the existence of Pω(±∞)-solutions of (1), it is necessary and sufficient the
conditions

lim
t↑ω

q(t) = 0, lim
t↑ω

Q(t) = ∞ (4)

to be satisfied. Moreover, for each such solution the following asymptotic representations, when t ↑ ω

ln |y(t)| = lnπ2
ω(t) +

α0

2
Q(t)[1 + o(1)],

ln |y′(t)| = ln |πω(t)|+
α0

2
Q(t)[1 + o(1)], ln |y′′(t)| = α0

2
Q(t)[1 + o(1)]

(5)

take place.

Indeed, if y : [ty, ω[→ R is a Pω(±∞)-solution of the equation (1), then the conditions (3) are
met and the following limit relations are true:

lim
t↑ω

y′′′(t)πω(t)

y′′(t)
= 0, lim

t↑ω

y′′(t)πω(t)

y′(t)
= 1, (6)

lim
t↑ω

y′′(t)π2
ω(t)

y(t)
= 2, lim

t↑ω

y′(t)πω(t)

y(t)
= 2. (7)

Without loss of generality, we can assume that y′′(t), y′(t), ln |y(t)| are non-zero when t ∈ [ty, ω[ .
Therefore, considering the limiting relations (7) and formulas

y(t) ∼ 1

2
π2
ω(t) y

′′(t), ln |y(t)| ∼ lnπ2
ω(t) when t ↑ ω,

from equation (1) we get

y′′′(t) = α0p(t)
π2
ω(t)

2
| lnπ2

ω(t)|σy′′(t) [1 + o(1)]. (8)

Hence, in view of the first of limiting relations (6), it follows that

p(t)π3
ω(t) | lnπ2

ω(t)|σ −→ 0 when t ↑ ω,

that is, the first of the conditions (4) of the theorem is satisfied. Dividing now (8) by y′′(t) and
integrating obtained relation on the interval from ty to t, come to a conclusion considering the first

from conditions (4) that
ω∫
ty

p(t)π2
ω(t)| lnπ2

ω(t)|σ dt = ∞ and when t ↑ w the asymptotic relation

ln |y′′(t)| = α0

2

t∫
a

p(τ)π2
ω(τ) | lnπ2

ω(τ)|σ dτ [1 + o(1)]

take place, that is, the second of the theorem conditions (4) is met and the third of the asymptotic
relations (5).

The validity of the first and second asymptotic representations (5) directly follows from the
third, considering that y(t) ∼ 1

2 π
2
ω(t) y

′′(t) and y′(t) ∼ πω(t) y
′′(t) when t ↑ ω.

Assuming that conditions (4) are met, we reduce equation (1) using transformations

ln |y(t)| = lnπ2
ω(τ)[1 + v1(τ)],

y′(t)

y(t)
=

2[1 + v2(τ)]

πω(t)
,

(y′(t)
y(t)

)′
=

−2 [1 + v3(τ)]

π2
ω(t)

, τ = β ln |πw(t)|, β =

{
1, when w = +∞,

−1, when w < +∞,

(9)
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to a system of differential equations
v′1 =

1

τ
[v2 − v1],

v′2 = β[v2 − v3],

v′3 = β
[
f(τ) + σf(τ)v1 + 6v2 − 4v3 + V (τ, v1, v2, v3)

]
,

(10)

in which

f(τ) = f(τ(t)) = α0q(t), V (τ, v1, v2, v3) = 12v22 + 4v32 − 6v2v3 + f(τ)
[
|1 + v1|σ − 1− σv1

]
.

For the system (10) all the conditions of the Theorem 2.6 from the work [2] are satisfied.
According to that theorem the system (10) has at least one solution (v1, v2, v3) : [τ1,+∞) →
R3(τ1 ≥ τ0), converges to zero when τ → +∞, to which, due to replacements (9), matches the
solution y(t) of the differential equation (1), allowing the asymptotic representations (5) when t ↑ ω.
Theorem 2. Let the function p : [a, ω) → (0,+∞) be continuously differentiable and along with
the conditions (4) the following conditions

ω∫
a

|q′(t)| dt < +∞,

ω∫
a

q2(t)

|πω(t)|
dt < +∞,

ω∫
a

q(t)|Q(t)|
πω(t) ln |πω(t)|

dt < +∞

hold. Then for any c ̸= 0 equation (1) has Pω(±∞)-solution. Furthermore, for every such solution
the following asymptotic representations when t → w

y(t) = π2
ω(t) e

α0Q(t)[c+ o(1)],

y′(t) = πω(t) e
α0Q(t)[2c+ o(1)], y′′(t) = eα0Q(t)[2c+ o(1)]

take place.
Let present a corollary of these theorems, when σ = 0, i.e. for the following linear differential

equation
y′′′ = α0p(t)y, (11)

where α0 ∈ {−1; 1}, σ ∈ R, p : [a,w) → (0,+∞) – continuous function; a < w ≤ +∞.
Corollary 1. For the existence of Pω(±∞)-solutions of (11), it is necessary and sufficient the
conditions

lim
t↑ω

p(t)π3
ω(t) = 0, lim

t↑ω

t∫
a

p(τ)π2
ω(τ) dτ = ∞ (12)

to be fulfilled. Furthermore, for any such solution the following asymptotic representations, when
t ↑ ω

ln |y(t)| = lnπ2
ω(t) +

α0

2

t∫
a

p(τ)π2
ω(τ) dτ [1 + o(1)],

ln |y′(t)| = ln |πω(t)|+
α0

2

t∫
a

p(τ)π2
ω(τ) dτ [1 + o(1)],

ln |y′′(t)| = α0

2

t∫
a

p(τ)π2
ω(τ) dτ [1 + o(1)]

take place.
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Corollary 2. Let the function p : [a, ω) → (0,+∞) be continuously-differentiable and along with
the conditions (12) the following conditions

ω∫
a

∣∣(p(t)π3
ω(t))

′∣∣ dt < +∞,

ω∫
a

p2(t)|π5
ω(t)| dt < +∞,

ω∫
a

p(t)π2
ω(t)

ln |πω(t)|

t∫
a

p(τ)π2
ω(τ) dτ dt < +∞

hold. Then for any c ̸= 0 equation (11) has Pω(±∞)-solution. Furthermore, for any such solution
the following asymptotic representations, when t → w:

y(t) = π2
ω(t) exp

(
α0

t∫
a

p(τ)π2
ω(τ) dτ

)
[c+ o(1)],

y′(t) = πω(t) exp

(
α0

t∫
a

p(τ)π2
ω(τ) dτ

)
[2c+ o(1)],

y′′(t) = exp

(
α0

t∫
a

p(τ)π2
ω(τ) dτ

)
[2c+ o(1)]

take place.

The obtained asymptotes are consistent with the already known results for linear differential
equations (see [5, Chapter 1]).
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