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1 Introduction
The problem of existence of solutions with a countable number of zeros on a given domain to
Emden–Fowler type equations is investigated. Consider the equation

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, 0 < m 6 p(t, ξ1, . . . , ξn) 6 M < +∞, t ∈ R, (1.1)

where n ∈ N, n > 2, k ∈ R, k > 1, the function p(t, ξ1, . . . , ξn) is continuous, and Lipschitz
continuous in ξ1, . . . , ξn.

We prove that equation (1.1) has solutions with a countable set of zeros on every finite interval
[a, b). The existence of solutions with a given finite number of zeros was considered in the previous
papers, and results from them will be used to prove the main result. Namely, [3] is devoted to the
case of the third- and the fourth-order Emden–Fowler type equations with constant p, [4, 6] deal
with the third-order equation with a variable coefficient, and [5, 8] expand the previous results to
the higher-order case. They based on the result obtained in [1,2]. Some results of the papers [3–6,8]
can be summarized as

Theorem 1.1. For any integer S ≥ 2 and any finite interval [a, b] ⊂ R equation (1.1) has a solution
y(t) defined on the interval, y(t) has exactly S zeros on the interval and y(a) = 0, y(b) = 0.

Now, this theorem is expanded to the new case.

2 The main result
Theorem 2.1 ([7]). For any finite interval [a, b) ⊂ R equation (1.1) has a solution y(t) defined on
the interval, y(t) a countable set of zeros on the interval and y(a) = 0.

3 Sketch of the proof
The idea of the proof is similar to that of the proof of the main result from [8]. Suppose that y(t)
is a maximally extended solution to (1.1) with initial data y(a) = 0, y′(a) = y1 > 0, . . . , y(n−1)(a) =
yn−1 > 0. In [1] it is proved that y(t) has the countable number of zeroes. By tN we denote a
position of the N -th zero of y(t) after the point a. In [8] it was proved that tN is a continuous
function on (y1, . . . , yn−1). Lower and upper estimates of the continuous function tN (y1, . . . , yn−1)
show that the N -th zero of the solution can be located at any point on the axis after a, hence
solution with exactly N zeros can be defined on any [a, b], if we choose appropriate initial data.
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Proof of Theorem 2.1 has the same idea with some minor modifications. We know (see, for
example, [1, Ch. 7]) that tN tends to some finite limit t∗ as N → +∞, but the solution itself is
not defined at the point t∗. It appears that t∗(y1, . . . , yn−1) is also a continuous function of the
variables (y1, . . . , yn−1) – like tN (y1, . . . , yn−1). In addition, we obtain upper and lower estimates
of t∗ with the help of [1, p. 193, Lemmas 7.1, 7.2, 7.3] and Theorem 1.1.

We prove the continuity of t∗(y1, . . . , yn−1) using the continuity of every tN (y1, . . . , yn−1) and
lemmas [1, p. 193, Lemmas 7.1, 7.2, 7.3], since they give some estimates on the distance between tN
and tN+1 in comparison with the distance between tN and tN−1. The proposition of discontinuity
of t∗(y1, . . . , yn−1) contradicts with those estimates.

4 Future plans
Papers [4, 5] demonstrate that Theorem 1.1 still holds true when k ∈ (0, 1), so in future I hope to
expand Theorem 2.1 on this case as well.
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