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1 Introduction

We investigate solutions of the initial value problem (IVP)

(p(t)d(u' (1)) + p(t) f($(u(t))) =0, t € (0,00),
u(0) = ug, ¢'(0) =0, wugy € [Lo,0), (1.2)

where

¢ € C*R), ¢'(z) >0 for =€ (R)\{0}), (

o(R) =R, ¢(0) =0, (

Lo <0< L, f(¢(Lo)) = f(0)=f(o(L)) =0, (

f € Lip[¢(Lo), (L)), xf(z) >0 for x € ((¢(Lo), ¢(L)) \ {0}), (
p € C[0,00) N C(0,00), p'(t) >0 for t € (0,00), p(0)=0. (

[ N = N =
N O Ot = W

)
)
)
)
)
)

A function u € C1[0, 00) with ¢(u') € C1(0, 00) which satisfies equation (1.1) for every ¢ € (0, c0
is called a solution of equation (1.1). If moreover u satisfies the initial conditions (1.2), then u is
called a solution of IVP (1.1), (1.2).

Equation (1.1) has the constant solutions u(t) = L, u(t) = 0 and u(t) = Lo.

Consider a solution u of IVP (1.1), (1.2) with ug € [Lo,0) and denote

Usup = sup {u(t) : t € [0,00)}.
o If ugyy < L, then u is called a damped solution of IVP (1.1),(1.2).

o If ugy, = L and u is nondecreasing (i.e. tlim u(t) = L), then u is called a homoclinic solution
—00

of IVP (1.1),(1.2).

o The homoclinic solution is called a regular homoclinic solution, if u(t) < L for t € [0,00) and
a singular homoclinic solution, if there exists to > 0 such that u(t) = L for t € [tg, 00).

o If ugyp > L, then u is called an escape solution of IVP (1.1),(1.2).

In particular, we find additional conditions for p, ¢ and f which guarantee for some ug € [Lg, 0)
the existence of a nondecreasing solution of IVP (1.1), (1.2) converging to L for ¢ — co. Note that if
we extend the function p in equation (1.1) from the half-line onto R as an even function and assume
that ¢ is odd, then any solution u of IVP (1.1), (1.2) with tlgélo u(t) = L fulfils t_lér_noo u(t) = L, hence

u is @ homoclinic solution. This is a motivation for our above definition. Due to condition (1.7) the
function 1/p(t) may not be integrable on [0, 1] and consequently equation (1.1) has a time singularity
at t = 0. Problems of this type arise in hydrodynamics [4] or in the nonlinear field theory [3], where
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homoclinic solutions play an important role in the study of behaviour of corresponding differential
models.
Our first attempts in this subject have been made for the equation without ¢-Laplacian

(O (1)) +q(t) f(u(t) =0, t€(0,00),

with p = ¢ in [6-8] and for p # ¢ in [1,9].

2 Existence and asymptotic properties of solutions of IVP

Here we present an overview of results from [2] and [10] which we need to get a homoclinic solution
of IVP (1.1), (1.2). Since values of any homoclinic solution belong to [Lg, L], we can assume without
loss of generality

f(z) =0 for x < ¢(Lo), = > ¢(L). (2.1)

Theorem 2.1 (Existence of solutions). Assume (1.3)—(2.1). Then, for each starting value ug €
[Lo,0), there exists a solution of IVP (1.1),(1.2).

Theorem 2.2 (Damped solutions). Let (1.3)—(2.1) hold and let

dB € (Lo,0): F(B)= F(L), where F(z)= /f(d)(s))ds, z € R, (2.2)
0
and 0
r\t) _
Jim o) =0. (2.3)

Then every solution of IVP (1.1),(1.2) with the starting value ug € [B,0) is damped.
Assume in addition that
lim |](67Y () < oo, (2.4)
z—0

and that u is a damped solution of IVP (1.1), (1.2) with the starting value uy € (Lo,0). Then u is
a unique solution of this IVP.

Theorem 2.3 (Escape solutions). Let (1.3)—~(2.3) hold. Then there exist infinitely many escape

solutions of IVP (1.1), (1.2) with starting values in [Lo, B).
Assume in addition that (2.4) hold and that u is an escape solutions of IVP (1.1), (1.2) with the

starting value ug € (Lo, B). Then u is a unique solution of this IVP.

The next theorem describes asymptotic behaviour of damped, homoclinic and escape solutions
starting at ug € (Lo, 0).

Theorem 2.4. Let (1.3)-(2.3) hold and let u be a solution of IVP (1.1),(1.2) with the starting
value ug € (Lg,0). Then

u(t) > Ly and 3¢ >0 such that |u'(t)| < ¢ for t € (0,00). (2.5)
The constant ¢ depends on Ly, Ly, ¢ and f and does not depend on p and u.
1. Assume that usy, < L, i.e. u is a damped solution.
o Let 0 > 0 be the first zero of u. Then there exists 0 < a < b such that

u(a) € (0,L), u'(t)>0 on (0,a), u'(a)=0, u'(t)<0 on (a,b). (2.6)
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e Letu <0 on[0,00). Then

uw'(t) >0 for t € (0,00), lim u(t)=0, lim u/(t)=0. (2.7)

t—o00 t—o00

2. Assume that usyp > L, i.e. u is an escape solution. Then

u'(t) >0 for t € (0,00). (2.8)

3. Assume that usy, = L. Then there are two possibilities.
e u(t) <L fort e [0,00) which yields

uW'(t) >0 for t € (0,00), limwu(t)=1L, limu/(t)=0, (2.9)

t—00 t—00
and u is a reqular homoclinic solution.
e There exists to > 0 such that u(to) = L, u'(tg) = 0 which implies
u'(t) >0 for t € (0,t), (2.10)
and there ezists a singular homoclinic solution v, where v = u on [0,tg] and v = L on
[to, 00).

Consider a solution u # Ly of IVP (1.1), (1.2) with ug = Lg. Since Ly < 0, there exists € > 0
such that u(t) < 0 for ¢t € [0,¢], and by (2.1), f(é(u(t))) < 0 for t € [0,¢]. Integrating (1.1) over

[0,t] we get
t

p(t)p(u'(t)) = — /p(S)f(¢(U(S))) ds >0, te0,e].
0

Hence «/(t) > 0 and wu(t) is nondecreasing on [0,¢]. Consequently, since u # Lo, there exists a
maximal ag > 0 such that

u(t) = Lo on [0, ap] and wu is increasing in a right neighbouhood of ag. (2.11)

Therefore all assertions of Theorem 2.4 are valid also for ug = Lg if we replace 0 by ag.

3 Existence of homoclinic solutions

IVP (1.1),(1.2) can be transformed on the equivalent integral equation

u(t) = uo + /tcle(— p(ls) /Sp(T)f(¢(U(T)))dT> ds, t € [0,00). (3.1)
0 0

Assumption (1.3) implies that ¢ is locally Lipschitz continuous on R, but if ¢’(0) = 0, then

lim (6™1)'(z) = o0,

x—0
and so ¢! does not fulfil the Lipschitz condition on intervals containing 0. If values of u are
between Lo and L, we see that

S

lim —— / p(7) f(6(u(r))) dr = 0.

s—0+ p(s)
0
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Therefore ¢! in (3.1) is considered on an interval containing zero. Hence, in order to prove the
uniqueness for IVP (1.1), (1.2) if ¢’(0) = 0, we need to use some new condition for ¢! instead of
the Lipschitz one. For such condition see (2.4). Then we get the main result published in [5] and
contained in the next theorem.

Theorem 3.1 (Homoclinic solutions). Let (1.3)—(1.7) and (2.2)(2.4) hold. Further assume that

there exists a right neighbourhood of ¢(Lg), where f is decreasing. (3.2)

Then there exists uj € [Lo, B) such that a solution uy, of IVP (1.1), (1.2) with ug = u is homoclinic.

A typical model example of (1.1) is an equation with the a-Laplacian ¢(x) = |z|*sgnz, x € R,
where o > 1. Then ¢'(z) = ajz|*"! and conditions (1.3) and (1.4) are fulfilled. If o > 1, then
#'(0) =0, ¢’ is nonincreasing on (—o0,0) and nondecreasing on (0, cc). Further,

L1y : —1y/
= — @ 1 =
o lzl=7 lim(¢™7) () = oo,

_ 1 _
¢~ H(x) = |z|> sgnw, (¢71)(2)
which yields that ¢! is not Lipschitz continuous at 0. Since
1

. —1\7 T i—l —
tim (671) (@) = lim ofaf£~1 =0

we see that the a-Laplacian ¢(x) = |z|®sgna fulfils (2.4). If we take p(t) = t°, t € [0,00), where
B > 0, then p fulfils (1.7). As an example of f satisfying conditions (1.5) and (1.6) we can choose

J(@) = 2(x — $(Lo))($(L) — 2), x € R.
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