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1 Introduction
We investigate solutions of the initial value problem (IVP)(

p(t)ϕ(u′(t))
)′
+ p(t)f(ϕ(u(t))) = 0, t ∈ (0,∞), (1.1)

u(0) = u0, u′(0) = 0, u0 ∈ [L0, 0), (1.2)

where

ϕ ∈ C1(R), ϕ′(x) > 0 for x ∈ (R \ {0}), (1.3)
ϕ(R) = R, ϕ(0) = 0, (1.4)

L0 < 0 < L, f(ϕ(L0)) = f(0) = f(ϕ(L)) = 0, (1.5)
f ∈ Lip[ϕ(L0), ϕ(L)], xf(x) > 0 for x ∈

(
(ϕ(L0), ϕ(L)) \ {0}

)
, (1.6)

p ∈ C[0,∞) ∩ C1(0,∞), p′(t) > 0 for t ∈ (0,∞), p(0) = 0. (1.7)

A function u ∈ C1[0,∞) with ϕ(u′) ∈ C1(0,∞) which satisfies equation (1.1) for every t ∈ (0,∞)
is called a solution of equation (1.1). If moreover u satisfies the initial conditions (1.2), then u is
called a solution of IVP (1.1), (1.2).

Equation (1.1) has the constant solutions u(t) ≡ L, u(t) ≡ 0 and u(t) ≡ L0.
Consider a solution u of IVP (1.1), (1.2) with u0 ∈ [L0, 0) and denote

usup = sup
{
u(t) : t ∈ [0,∞)

}
.

• If usup < L, then u is called a damped solution of IVP (1.1), (1.2).

• If usup = L and u is nondecreasing (i.e. lim
t→∞

u(t) = L), then u is called a homoclinic solution
of IVP (1.1), (1.2).

• The homoclinic solution is called a regular homoclinic solution, if u(t) < L for t ∈ [0,∞) and
a singular homoclinic solution, if there exists t0 > 0 such that u(t) = L for t ∈ [t0,∞).

• If usup > L, then u is called an escape solution of IVP (1.1), (1.2).

In particular, we find additional conditions for p, ϕ and f which guarantee for some u0 ∈ [L0, 0)
the existence of a nondecreasing solution of IVP (1.1), (1.2) converging to L for t → ∞. Note that if
we extend the function p in equation (1.1) from the half-line onto R as an even function and assume
that ϕ is odd, then any solution u of IVP (1.1), (1.2) with lim

t→∞
u(t) = L fulfils lim

t→−∞
u(t) = L, hence

u is a homoclinic solution. This is a motivation for our above definition. Due to condition (1.7) the
function 1/p(t) may not be integrable on [0, 1] and consequently equation (1.1) has a time singularity
at t = 0. Problems of this type arise in hydrodynamics [4] or in the nonlinear field theory [3], where
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homoclinic solutions play an important role in the study of behaviour of corresponding differential
models.

Our first attempts in this subject have been made for the equation without ϕ-Laplacian

((t)u′(t))′ + q(t)f(u(t)) = 0, t ∈ (0,∞),

with p ≡ q in [6–8] and for p ̸≡ q in [1, 9].

2 Existence and asymptotic properties of solutions of IVP
Here we present an overview of results from [2] and [10] which we need to get a homoclinic solution
of IVP (1.1), (1.2). Since values of any homoclinic solution belong to [L0, L], we can assume without
loss of generality

f(x) = 0 for x ≤ ϕ(L0), x ≥ ϕ(L). (2.1)

Theorem 2.1 (Existence of solutions). Assume (1.3)–(2.1). Then, for each starting value u0 ∈
[L0, 0), there exists a solution of IVP (1.1), (1.2).

Theorem 2.2 (Damped solutions). Let (1.3)–(2.1) hold and let

∃B ∈ (L0, 0) : F (B) = F (L), where F (x) =

x∫
0

f(ϕ(s)) ds, x ∈ R, (2.2)

and
lim
t→∞

p′(t)

p(t)
= 0. (2.3)

Then every solution of IVP (1.1), (1.2) with the starting value u0 ∈ [B, 0) is damped.
Assume in addition that

lim
x→0

|x|(ϕ−1)′(x) < ∞, (2.4)

and that u is a damped solution of IVP (1.1), (1.2) with the starting value u0 ∈ (L0, 0). Then u is
a unique solution of this IVP.

Theorem 2.3 (Escape solutions). Let (1.3)–(2.3) hold. Then there exist infinitely many escape
solutions of IVP (1.1), (1.2) with starting values in [L0, B).

Assume in addition that (2.4) hold and that u is an escape solutions of IVP (1.1), (1.2) with the
starting value u0 ∈ (L0, B). Then u is a unique solution of this IVP.

The next theorem describes asymptotic behaviour of damped, homoclinic and escape solutions
starting at u0 ∈ (L0, 0).

Theorem 2.4. Let (1.3)–(2.3) hold and let u be a solution of IVP (1.1), (1.2) with the starting
value u0 ∈ (L0, 0). Then

u(t) > L0 and ∃ c̃ > 0 such that |u′(t)| ≤ c̃ for t ∈ (0,∞). (2.5)

The constant c̃ depends on L0, L1, ϕ and f and does not depend on p and u.

1. Assume that usup < L, i.e. u is a damped solution.

• Let θ > 0 be the first zero of u. Then there exists θ < a < b such that

u(a) ∈ (0, L), u′(t) > 0 on (0, a), u′(a) = 0, u′(t) < 0 on (a, b). (2.6)
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• Let u < 0 on [0,∞). Then

u′(t) > 0 for t ∈ (0,∞), lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (2.7)

2. Assume that usup > L, i.e. u is an escape solution. Then

u′(t) > 0 for t ∈ (0,∞). (2.8)

3. Assume that usup = L. Then there are two possibilities.

• u(t) < L for t ∈ [0,∞) which yields

u′(t) > 0 for t ∈ (0,∞), lim
t→∞

u(t) = L, lim
t→∞

u′(t) = 0, (2.9)

and u is a regular homoclinic solution.
• There exists t0 > 0 such that u(t0) = L, u′(t0) = 0 which implies

u′(t) > 0 for t ∈ (0, t0), (2.10)

and there exists a singular homoclinic solution v, where v = u on [0, t0] and v = L on
[t0,∞).

Consider a solution u ̸≡ L0 of IVP (1.1), (1.2) with u0 = L0. Since L0 < 0, there exists ε > 0
such that u(t) < 0 for t ∈ [0, ε], and by (2.1), f(ϕ(u(t))) ≤ 0 for t ∈ [0, ε]. Integrating (1.1) over
[0, t] we get

p(t)ϕ(u′(t)) = −
t∫

0

p(s)f(ϕ(u(s))) ds ≥ 0, t ∈ [0, ε].

Hence u′(t) ≥ 0 and u(t) is nondecreasing on [0, ε]. Consequently, since u ̸≡ L0, there exists a
maximal a0 ≥ 0 such that

u(t) = L0 on [0, a0] and u is increasing in a right neighbouhood of a0. (2.11)

Therefore all assertions of Theorem 2.4 are valid also for u0 = L0 if we replace 0 by a0.

3 Existence of homoclinic solutions
IVP (1.1), (1.2) can be transformed on the equivalent integral equation

u(t) = u0 +

t∫
0

ϕ−1

(
− 1

p(s)

s∫
0

p(τ)f(ϕ(u(τ))) dτ

)
ds, t ∈ [0,∞). (3.1)

Assumption (1.3) implies that ϕ is locally Lipschitz continuous on R, but if ϕ′(0) = 0, then

lim
x→0

(ϕ−1)′(x) = ∞,

and so ϕ−1 does not fulfil the Lipschitz condition on intervals containing 0. If values of u are
between L0 and L, we see that

lim
s→0+

1

p(s)

s∫
0

p(τ)f(ϕ(u(τ))) dτ = 0.
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Therefore ϕ−1 in (3.1) is considered on an interval containing zero. Hence, in order to prove the
uniqueness for IVP (1.1), (1.2) if ϕ′(0) = 0, we need to use some new condition for ϕ−1 instead of
the Lipschitz one. For such condition see (2.4). Then we get the main result published in [5] and
contained in the next theorem.

Theorem 3.1 (Homoclinic solutions). Let (1.3)–(1.7) and (2.2)–(2.4) hold. Further assume that

there exists a right neighbourhood of ϕ(L0), where f is decreasing. (3.2)

Then there exists u∗0 ∈ [L0, B) such that a solution uh of IVP (1.1), (1.2) with u0 = u∗0 is homoclinic.

A typical model example of (1.1) is an equation with the α-Laplacian ϕ(x) = |x|α sgnx, x ∈ R,
where α ≥ 1. Then ϕ′(x) = α|x|α−1 and conditions (1.3) and (1.4) are fulfilled. If α > 1, then
ϕ′(0) = 0, ϕ′ is nonincreasing on (−∞, 0) and nondecreasing on (0,∞). Further,

ϕ−1(x) = |x|
1
α sgnx, (ϕ−1)′(x) =

1

α
|x|

1
α
−1, lim

x→0
(ϕ−1)′(x) = ∞,

which yields that ϕ−1 is not Lipschitz continuous at 0. Since

lim
x→0

x(ϕ−1)′(x) =
1

α
lim
x→0

x|x|
1
α
−1 = 0,

we see that the α-Laplacian ϕ(x) = |x|α sgnx fulfils (2.4). If we take p(t) = tβ, t ∈ [0,∞), where
β > 0, then p fulfils (1.7). As an example of f satisfying conditions (1.5) and (1.6) we can choose

f(x) = x(x− ϕ(L0))(ϕ(L)− x), x ∈ R.
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