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We study the weighted boundary value problem

u′(t) = (gu)(t), t ∈ (a, b], (1)
lim
t→a+

ϱ(t)u(t) ∈ R exists, (2)
b∫
a

ϱ(t)|u′(t)| dt < +∞, (3)

where −∞ < a < b < ∞, ϱ : (a, b] → (0,+∞) is a non-decreasing absolutely continuous function
such that lim

t→a+
ϱ(t) = 0. We assume that g : C((a, b],R) → L1; loc((a, b],R) is non-increasing in the

sense that (gu1)(t) ≤ (gu0)(t) for a.e. t ∈ (a, b] for arbitrary pairs of functions {u0, u1} ⊂ C((a, b],R)
such that u1(t) ≥ u0(t), t ∈ (a, b]. In particular, the case of neutral type equations is excluded from
consideration.

By a solution of equation (1), we mean a locally absolutely continuous function u : (a, b] → R
satisfying (1) almost everywhere on the interval (a, b]. In particular, solutions of (1) may be unbo-
unded in a neighbourhood of the point a.

The formulation has been motivated, in particular, by a relation to boundary value problems
with conditions at infinity, integral boundary conditions on unbounded intervals [1,3], and Kneser
type solutions with possible blow-up [2, 4].

The following notation is used.
C((a, b],R) is the set of continuous functions u : (a, b] → R.
L1([a, b],R) is the set of Lebesgue integrable functions u : [a, b] → R.
L1; loc((a, b],R) is the set of functions u : (a, b] → R such that u|[a0,b] ∈ L1([a0, b],R) for any

a0 ∈ (a, b).
C̃([a, b],R) is the set of absolutely continuous functions u : [a, b] → R.
C̃loc((a, b],R) is the set of all the locally absolutely continuous functions u : (a, b] → R (i. e.,

u|[a0,b] ∈ C̃([a0, b],R) for any a0 ∈ (a, b)).
C̃loc; ϱ((a, b],R) is the set of all u ∈ C̃loc((a, b],R) with ϱu′ ∈ L1((a, b],R) such that the limit

lim
t→a+

ϱ(t)u(t) exists and is finite.

Let ψ0, ψ1 be functions from C̃loc; ϱ((a, b],R) such that

(−1)i(ψ
(i)
1 (t)− ψ

(i)
0 (t)) ≥ 0, t ∈ (a, b], i = 0, 1, (4)
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and
lψ0,ψ1 := inf

{
ψ1(t)− ψ0(t) : t ∈ (a, b]

}
. (5)

The value lψ0,ψ1 is positive if the graphs of ψ0 and ψ1 do not touch each other. For any pair
ψ0, ψ1 with the above properties, the set of functions u such that

ψ0(t) + (1− θ)lψ0,ψ1 ≤ u(t) ≤ ψ1(t)− θ lψ0,ψ1 , t ∈ (a, b], (6)
ψ′
1(t) ≤ u′(t) ≤ ψ′

0(t), t ∈ (a, b], (7)

is non-empty for any θ ∈ [0, 1]. Introduce the set Sθ(ψ0, ψ1) by putting

Sθ(ψ0, ψ1) :=
{
u ∈ C̃loc; ϱ((a, b],R) : (6) and (7) hold

}
(8)

for θ ∈ [0, 1].
For any θ ∈ [0, 1], the set Sθ(ψ0, ψ1) describes the area obtained by shifting the graphs of ψ0

and ψ1, respectively, upwards and downwards, in the ratio 1 − θ : θ, until they touch each other.
Clearly, this happens at the points of the set{

t ∈ (a, b] : ψ1(t)− ψ0(t) = lψ0,ψ1

}
. (9)

The typical situation is that where (−1)iψi, i = 0, 1, are non-decreasing and, hence, set (9) is a
singleton consisting of the point b.

Theorem. Let the mapping g : C((a, b],R) → L1; loc((a, b],R) in (1) be non-increasing and, more-
over,

ϱ g
(λ
ϱ

)
∈ L1((a, b],R) (10)

for any λ ∈ R. Furthermore, let there exist certain functions ψ0 and ψ1 in C̃loc; ϱ((a, b],R) with
properties (4) such that

(−1)k
(
ψ′
k(t)− (gψk)(t)

)
≥ 0, t ∈ (a, b], k = 0, 1. (11)

Then for any θ ∈ [0, 1] equation (1) has a solution u ∈ C̃loc; ϱ((a, b],R) such that u ∈ Sθ(ψ0, ψ1).

Under the conditions assumed, one can guarantee the existence of solutions in the corresponding
weighted space and specify certain bounds for u and u′. These bounds allow us to select solutions
with different growth rates while we are still working in the same weighted space. Indeed, consider,
e. g., the simple equation

u′(t) =
ϕ(u(1))

t
− ψ(u(1))

t2
, t ∈ (0, 1], (12)

where ϕ(s) = 2π−1 arccot s− 1/2 and ψ(s) = 2π−1 arctan s+1/2 for all s ∈ (−∞,∞). It is easy to
see that any u satisfying (12) has the form

uλ(t) = λ+ ϕ(λ) ln t+
(1
t
− 1

)
ψ(λ), t ∈ (0, 1], (13)

where λ ∈ R, and since |ϕ(λ)| + |ψ(λ)| > 0, it follows that uλ(t) is unbounded as t → 0+ for
any λ. If λ ̸= −1, then ψ(λ) ̸= 0 and the growth of |uλ(t)| as t → 0+ is of order 1/t, whereas
u−1(t) = −1+ ln t has only logarithmic growth. Note that the corresponding operator g for (12) is
non-increasing.

For equation (12), conditions (4), (11) are satisfied, in particular, with

ψ0(t) = 0, ψ1(t) =
1

t
− 1,
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and, hence, the theorem claims that (12) has solutions u with the properties 0 ≤ u(t) ≤ −1 + 1/t,
−1/t2 ≤ u′(t) ≤ 0, u(1) = 0, which indeed hold, e. g., for u0(t) = (ln t+ t−1 − 1)/2 (see (13)). On
the other hand, by choosing

ψ0(t) = −1 + µ ln t, ψ1(t) = −1

with µ > 1, we get the bounds −1 + µ ln t ≤ u(t) ≤ −1, 0 ≤ u′(t) ≤ µt−1, u(1) = −1 that fit only
the solution u−1(t) = −1+ ln t and do not cover uλ with λ ̸= −1. Note that (10) is satisfied in this
case for ρ(t) = tα with α > 1.

If g is a linear operator of the form

(gu)(t) = −p(t)u(τ(t)) + q(t), t ∈ (a, b],

where p and q are locally integrable, p ≥ 0, and τ : (a, b] → (a, b] is a measurable function, condition
(10) reduces to the relations

b∫
a

p(t)
ϱ(t)

ϱ(τ(t))
dt <∞,

b∫
a

ϱ(t)|q(t)| dt <∞, (14)

which determine the corresponding class of equations for which the theorem can be applied. As an
example, consider the linear equation with advanced argument

u′(t) = −u(t
γ)

t
+ q(t), t ∈ (0, 1], (15)

where q is locally integrable and γ ∈ (0, 1). The function p(t) = 1/t satisfies (14) with ϱ(t) = tα,
t ∈ (0, 1], α > 1. Then, for arbitrary µ > 0, θ ∈ [0, 1], and q satisfying the estimate

|q(t)| ≤ µh(t), t ∈ (0, 1],

where h(t) = t−2 − t−γ−1, t ∈ (0, 1], the corresponding problem (15), (2), (3) has a solution u with
the terminal value u(1) = (1− 2θ)µ such that

−µ
t
+ 2(1− θ)µ ≤ u(t) ≤ µ

t
− 2θµ, − µ

t2
≤ u′(t) ≤ µ

t2
,

respectively, for all and almost all t ∈ (0, 1]. This follows from the theorem applied with ψi(t) =
(−µ)i+1t−1, i = 0, 1. Furthermore, if

−µh(t) ≤ σq(t) ≤ µ0
t
, t ∈ (0, 1],

for some σ ∈ {−1, 1}, 0 < µ0 ≤ µ, then for any θ ∈ [0, 1] there is a monotone solution with
u(1) = (12(σ + 1)− θ)µ+ (12(σ − 1) + θ)µ0 such that

µ ≤ σu(t) +
(
σθ +

1− σ

2

)
(µ− µ0) ≤

µ

t
, − µ

t2
≤ σu′(t) ≤ 0.

In particular, for q = −σµh, the problem in question admits the solution u(t) = σµt−1.
The conditions assumed do not exclude the possibility of existence of non-trivial solutions of

homogeneous problems. For example, by taking ψi(t) = (−1)i+1 exp(2(t−2 − 1)), i = 0, 1, we find
that the equation

u′(t) = − 4

t3
u
(√
t
)
+ q(t), t ∈ (0, 1],
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has a solution in the set C̃loc; ϱ((0, 1],R) for ϱ(t) = exp(−αt−2), α > 2, if

|q(t)| ≤ 4

e2t3
e

2
t2
(
1− e

2(t−1)

t2
)
, t ∈ (0, 1].

One can verify by direct substitution that u(t) = λ
t4

is a solution of the corresponding homogeneous
problem for any λ.

The theorem ensures the existence of solutions lying between ψ0 and ψ1 with terminal values
filling the corresponding interval. This does not exclude the possibility of existence of solutions
which escape from the regions in question. For example, consider the functional differential equation

u′(t) =
1

t2
(
1− exp(t)− u(exp(−t))

)
, t ∈ (0, 1]. (16)

Defining g according to the right-hand side of (16) and choosing the weight ϱ in the form ϱ(t) = tα,
α > 1, we find that equation (16) satisfies conditions (10).

It is easy to verify that problem (16), (2), (3) with this ϱ has a one-parametric family of solutions

u(t) = −1

t
− λ ln t. (17)

For ψ0(t) = −t−1 + 2 ln t, ψ1(t) = −t−1 − 2 ln t, the application of the theorem would result in the
existence of solutions u such that

2 ln t ≤ u(t) +
1

t
≤ −2 ln t, −2

t
≤ u′(t)− 1

t2
≤ 2

t
, u(1) = −1, (18)

and such solutions are indeed obtained from (17) for |λ| ≤ 2. However, if |λ| > 2, then solution
(17) has the same terminal value −1 but does not satisfy conditions (18) any more.

In the cases where ψ0 = c0 or ψ1 = c1, where c0 ≤ ψ1(b) and c1 ≥ ψ0(b), the solutions dealt with
in the theorem are obviously monotone, and their terminal values fill, respectively, the intervals
[c0, ψ1(b)], [ψ0(b), c1]. With non-constant bounding functions, the solution, generally speaking,
need not be monotone.

Under the conditions assumed, the set of solutions of the weighted problem in question possesses
the least and the greatest elements.
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