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1 Introduction
The classical formulation of the general linear boundary value problem (BVP) for linear ordinary
differential system

(Lx)(t) ≡ ẋ(t) +A(t)x(t) = f(t), t ∈ [0, T ], (1.1)

where A(t) is a n × n-matrix with elements summable on [0, T ], supposes that we are interested
in the study of the question about the existence of solutions to (1.1) that satisfy the boundary
conditions

ℓx = β (1.2)

with linear bounded vector-functional ℓ = col(ℓ1, . . . , ℓn) defined on the space of absolutely conti-
nuous functions x : [0, T ] → Rn (see below more in detail). The key point in (1.1), (1.2) is that
the number of linearly independent components ℓi in (1.2) equals the dimension of (1.1). In such a
case, the unique solvability of BVP (1.1), (1.2) for f = 0, β = 0 implies the everywhere and unique
solvability. If this is not the case, we have very specific situation with either the underdetermined
BVP or the overdetermined BVP [11].

Linear BVP’s for differential equations with ordinary derivatives, that lack the everywhere
and unique solvability, are met with in various applications. Among these applications are some
problems in Economic Dynamics [10, 12]. Results on the solvability and solutions representation
for these BVP’s are widely used as an instrument of investigating weakly nonlinear BVP’s [6].
General results concerning linear BVP’s for an abstract functional differential equation (AFDE)
are given in [5]. As for linear overdetermined BVP’s for AFDE in general, the principal results by
L. F. Rakhmatullina are given in detail in [2, 3, 5].

In this paper, we consider the case that the number of linearly independent boundary conditions
is greater than the dimension of the null-space of the corresponding homogeneous equation and
study the BVP for FDE in an essentially different statement. Namely, the question we discuss is
as follows: does there exist at least one free term f in the given linear FDE such that (1.2) holds
for a fixed β, taking into account some given pointwise constraints with respect to f(t) on [0, T ].
Next we give a description for the set of unreachable β’s, i.e. those for which f does not exist.

2 A class of boundary value problems
In this section, we consider a system of functional differential equations with aftereffect that, for-
mally speaking, is a concrete realization of the AFDE, and, on the other hand, it covers many
kinds of dynamic models with aftereffect (integro-differential, delayed differential, differential dif-
ference) [9, 12].
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Let us introduce the functional spaces where operators and equations are considered. Fix a
segment [0, T ] ⊂ R. By Ln

2 = Ln
2 [0, T ] we denote the Hilbert space of square summable functions

v : [0, T ] → Rn endowed with the inner product (u, v) =
T∫
0

u′(t)v(t) dt ( · ′ is the symbol of transpo-

sition). The space ACn
2 = ACn

2 [0, T ] is the space of absolutely continuous functions x : [0, T ] → Rn

such that ẋ ∈ Ln
2 with the norm ∥x∥ACn

2
= |x(0)|+

√
(ẋ, ẋ), where | · | stands for the norm of Rn.

Consider the functional differential equation

Lx ≡ ẋ−Kẋ−A(·)x(0) = f, (2.1)

where the linear bounded operator K : Ln
2 → Ln

2 is defined by

(Kz)(t) =

t∫
0

K(t, s)z(s) ds, t ∈ [0, T ],

the elements kij(t, s) of the kernel K(t, s) are measurable on the set 0 ≤ s ≤ t ≤ T and such that
|kij(t, s)| ≤ u(t)v(s), i, j = 1, . . . , n, u, v ∈ L1

2[0, T ], (n× n)-matrix A has elements that are square
summable on [0, T ].

In what follows we will use some results from [1, 3, 8, 9] concerning (2.1). The homogeneous
equation (2.1) (f(t) = 0, t ∈ [0, T ]) has the fundamental (n× n)-matrix X(t):

X(t) = En + V (t),

where En is the identity (n× n)-matrix, each column vi(t) of the (n× n)-matrix V (t) is a unique
solution to the Cauchy problem

v̇(t) =

t∫
0

K(t, s)v̇(s) ds+ ai(t), v(0) = 0, t ∈ [0, T ],

where ai(t) is the i-th column of A.
The solution to (2.1) with the initial condition x(0) = 0 has the representation

x(t) = (Cf)(t) =

t∫
0

C(t, s)f(s) ds,

where C(t, s) is the Cauchy matrix [8] of the operator L. This matrix can be defined (and con-
structed) as the solution to

∂

∂t
C(t, s) =

t∫
s

K(t, τ)
∂

∂τ
C(τ, s) dτ +K(t, s), 0 ≤ s ≤ t ≤ T,

under the condition C(s, s) = En. The properties of the Cauchy matrix used below are studied in
detail in [9].

The matrix C(t, s) is expressed in terms of the resolvent kernel R(t, s) of the kernel K(t, s).
Namely,

C(t, s) = En +

t∫
s

R(τ, s) dτ.
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The general solution to (2.1) has the form

x(t) = X(t)α+

t∫
0

C(t, s)f(s) ds,

with an arbitrary α ∈ Rn.
The general linear BVP is the system (2.1) supplemented by the linear boundary conditions

ℓx = β, β ∈ RN , (2.2)

where ℓ : ACn
2 → RN is a linear bounded vector functional. Let us recall the representation of ℓ:

ℓx =

T∫
0

Φ(s)ẋ(s) ds+Ψx(0). (2.3)

Here Ψ is a constant (N×n)-matrix, Φ is (N×n)-matrix with elements that are square summable on
[0, T ]. We assume that the components ℓi : AC

n
2 → R, i = 1, . . . , N , of ℓ are linearly independent.

BVP (2.1), (2.2) is well-posed if N = n. In such a situation, the BVP is uniquely solvable for
any f ∈ Ln

2 [0, T ] and β ∈ Rn if and only if the matrix

ℓX = (ℓX1, . . . , ℓXn),

where Xj is the j-th column of X, is nonsingular, i.e. det ℓX ̸= 0.
In the sequel we assume that N > n and the system ℓi : ACn

2 → R, i = 1, . . . , N , can be splitted
into two subsystems ℓ1 : ACn

2 → Rn and ℓ2 : ACn
2 → RN−n such that the BVP

Lx = f, ℓ1x = β1 (2.4)

is uniquely solvable. Without loss of generality we will consider the case that ℓ1 is defined by
ℓ1x ≡ x(0), formed by the first n components of ℓ, and the elements of β1 = 0 in (2.4) are the
corresponding components of β. Thus ℓ2 will stand for the final (N − n) components of ℓ, and
elements of β2 ∈ RN−n are defined as the final (N−n) components of β. Let us write ℓ1 in the form

ℓ1x =

T∫
0

Φ1(s)ẋ(s) ds+Ψ1x(0),

where Φ1(s) = 0 and Ψ1 = En are the corresponding rows of Φ(s) and Ψ, respectively, in (2.3).
Similarly,

ℓ2x =

T∫
0

Φ2(s)ẋ(s) ds+Ψ2x(0).

Put

Θi(s) = Φi(s) +

T∫
s

Φi(τ)C
′
τ (τ, s) dτ, i = 1, 2.

In the case that f is not constrained, it is shown in [11] that under the condition of nonsingularity
of the matrix

W =

T∫
0

Θ2(s)Θ
′
2(s) ds (2.5)
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BVP (2.1), (2.2) is solvable for all β2 ∈ RN−n if

f(t) = f0(t) + φ(t),

where
f0(t) = Θ′

2(t)[W
−1β2]

and φ( · ) ∈ Ln
2 is an arbitrary function that is orthogonal to each column of Θ′

2( · ):

T∫
0

Θ2(s)φ(s) ds = 0.

Here we consider the case of the pointwise constraints

ci ≤ fi(t) ≤ di, t ∈ [0, T ], ci ≤ di, i = 1, . . . , n, (2.6)

with respect to components fi(t) of the column f(t) = col(f1(t), . . . , fn(t)). Denote V = [c1, d1]×
· · · × [cn, dn].

In the sequel it is assumed that the elements of Φ2(t) are piecewise continuous on [0, T ].
To formulate the main theorem, let us introduce some notation. For any λ ∈ RN−n and

t ∈ [0, T ], we define z(t, λ) by the equality

z(t, λ) = max
(
λ′Θ2(t)v : v ∈ V

)
.

Define v(t, λ) as the centroid of the collection of the unite mass points belonging to V and
bringing the value z(t, λ) to the functional v → λ′ ·Θ2(t) · v.

Theorem. Let a collection {λi ∈ RN−n, i = 1, . . . ,m} be fixed, and a collection {qi ∈ R, i =
1, . . . ,m} be such that the inequalities

λ′
i

T∫
0

Θ(t) · v(t, λi) dt ≤ qi, i = 1, . . . ,m,

hold. Define P as the set of all ρ ∈ RN−n such that the inequalities

λ′
i · ρ ≤ qi, i = 1, . . . ,m,

are fulfilled. Then all β2 ∈ RN−n outside the polyhedron P are unreachable for BVP (2.1), (2.2)
under constraints (2.6).

The proof of the theorem is based on [7, Theorem 7.1 ].

Example. Let us consider the system

ẋ1(t) = x2(t− 1) + f1(t),

ẋ2(t) = −x2(t) + f2(t),
t ∈ [0, 3],

where x2(s) = 0 if s < 0, with the initial conditions

x1(0) = 0, x2(0) = 0,

and additional conditions as follows:

x1(3)− x2(2) = β1, x2(3) + x1(2) = β2,
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under the constraints
0 ≤ fi(t) ≤ 2, i = 1, 2.

Here we have

C(t, s) =

1

t∫
s

χ
[1,3]

(τ)χ
[0,τ−1]

(s) exp(1− τ + s) dτ

0 exp(s− t)

 ,

ℓ2x = col
(
x1(3)− x2(2), x2(3) + x1(2)

)
,

Θ2(s) =

(
C1,1(3, s)− χ

[0,2]
(s)C2,1(2, s) C1,2(3, s)− χ

[0,2]
(s)C2,2(2, s)

C2,1(3, s) + χ
[0,2]

(s)C1,1(2, s) C2,2(3, s) + χ
[0,2]

(s)C1,2(2, s)

)
,

where Cj,k(t, s), j, k = 1, 2 are the components of C(t, s). It should be noted that for W defined
by (2.5) the inequality detW > 5 holds.

By application of theorem for the case λi = col(sin(iπ/4), cos(iπ/4)), i = 1, . . . , 8, we obtain that
all points (β1, β2) outside the intersection of the quadrangle with corners
{(−1.35, 1.10), (1.02,−1.30), (5.40, 7.90), (7.90, 5.50)} and the quadrangle with corners
{(−0.60, 0), (−0.60, 6.55), (7.05, 0), (7.05, 6.55)} are unreachable for the problem under consider-
ation.
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