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In this paper we study the topological structure of the set of positive bounded variation solutions
of the quasilinear Neumann problem−

( u′√
1 + u′2

)′
= λa(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0,

(1)

where λ ∈ R is a parameter, a ∈ L∞(0, 1) changes sign, f ∈ C1(R) satisfies f(s), s > 0 for all s ̸= 0
and f ′(0) = 1. Problem (1) is a particular version of

−div
( ∇u√

1 + |∇u|2
)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

(2)

where Ω is a bounded regular domain in RN , with outward pointing normal ν and g : Ω×R → R and
σ : ∂Ω → R are given functions. This model plays a central role in the mathematical analysis of a
number of geometrical and physical issues, such as prescribed mean curvature problems for cartesian
surfaces in the Euclidean space [11, 19, 22–25, 30, 45, 46], capillarity phenomena for incompressible
fluids [16, 20, 21, 27, 28], and reaction-diffusion processes where the flux features saturation at high
regimes [12,29,44].

Although there is a large amount of literature devoted to the existence of positive solutions
for semilinear elliptic problems with indefinite nonlinearities [1–3, 7, 8, 26, 33, 37], no results were
available for the problem (2), even in the one-dimensional case (1), before [35,36], where we began
the analysis of the effects of spatial heterogeneities in the simplest prototype problem (1). Even if
part of our discussion in this paper has been influenced by some results in the context of semilinear
equations, it must be stressed that the specific structure of the mean curvature operator, u 7→
−div

(
∇u/

√
1 + |∇u|2

)
, makes the analysis in this paper much more delicate and sophisticated,

as (1) may determine spatial patterns which exhibit sharp transitions between adjacent profiles,
up to the formation of discontinuities [9, 10,12,17, 18,29, 40,42]. This special feature explains why
the existence intervals of regular positive solutions of [14,15,39] are smaller than those given in the
former references when dealing with bounded variation solutions. It is a well-agreed fact that the
space of bounded variation functions is the most appropriate setting for discussing these topics. The
precise notion of bounded variation solution of (1) used in this paper has been basically introduced
in [5, 6] and it has been extensively used and discussed later (see, e.g., [35, 38,40–43]).
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Definition 1 (Bounded variation solution). A bounded variation solution of problem (1) is a
function u ∈ BV (0, 1) such that

1∫
0

DuaDϕa√
1 + (Dua)2

dx+

1∫
0

Dus

|Dus|
Dsϕ =

1∫
0

λaf(u)ϕdx (3)

for all ϕ ∈ BV (0, 1) such that |Dϕs| is absolutely continuous with respect to |Dus|.
In Definition 1 the following notations are used for every v ∈ BV (0, 1) (we refer to, e.g., [4, 13]

for any required additional detail):
• Dv = Dvadx + Dvs is the Lebesgue–Nikodym decomposition of the Radon measure Dv in

its absolutely continuous part Dvadx, with density function Dva, and its singular part Dvs,
with respect to the Lebesgue measure dx in R.

• |Dv|, |Dva| and |Dvs| stand for the absolute variations of the measures Dv, Dva and Dvs,
respectively; thus, the Lebesgue–Nikodym decomposition of |Dv| is given by

|Dv| = |Dv|a dx+ |Dv|s = |Dva| dx+ |Dvs|.

• Dv
|Dv| and Dvs

|Dvs| denote the density functions of Dv and Dvs, respectively, with respect to their
absolute variations |Dv| and |Dvs|.

In [35], we discussed the existence and the multiplicity of positive bounded variation solutions
of (1) under various representative configurations of the behavior at zero and at infinity of the
function f . The solutions of [35] can be singular, for as they may exhibit jump discontinuities
at the nodal points of the weight function a, while they are regular, at least of class C1, on each
open interval where the weight function a has a constant sign. Instead, in [36] we investigated the
existence and the non-existence of positive regular solutions. Some of the most intriguing findings
of [35,36] can be synthesized by saying that the solutions of (1) obtained in [35] are regular as long
as they are small, in a sense to be precised later, whereas they develop singularities as they become
sufficiently large. This is in complete agreement with the peculiar structure of the mean curvature
operator, which combines the regularizing features of the 2-laplacian, when ∇u is sufficiently small,
with the severe sharpening effects of the 1-laplacian, when ∇u becomes larger.

A natural question arising at the light of these novelties is the problem of ascertaining whether
or not these regular and singular solutions can be obtained, simultaneously, by establishing the
existence of connected components of bounded variation solutions bifurcating from (l, u) = (l, 0),
which stem regular from (l, 0) and develop singularities as their sizes increase; thus establishing
the coexistence along the same component of both regular and singular solutions, as synoptically
illustrated by the two bifurcation diagrams in Figure 1. Although this phenomenology has been
already documented by the special example of [36, Section 8], by means of a rather sophisticated
phase plane analysis, solving this problem in our general setting still was a challenge.

The main aim of this work is establishing the existence of two connected components, C>
0 and

C+
λ0

, of the closure of the set of positive bounded variation solutions of problem (1),

S> =
{
(λ, u) ∈ [0,+∞)×BV (0, 1) : u > 0 is a solution of (1)

}
∪
{
(0, 0), (λ0, 0)

}
,

emanating from the line {(l, 0) : l ∈ R} of the trivial solutions, at the two principal eigenvalues
l = 0 and l = l0 of the linearization of (1) at u = 0,{

−u′′ = λa(x)u in (0, 1),

u′(0) = u′(1) = 0.
(4)
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Figure 1. Global bifurcation diagrams emanating from the positive principal

eigenvalue l0, according to the nature of the potential
s∫
0

f(t) dt of f : superlinear at

infinity (on the left), or sublinear at infinity (on the right).

Precisely, our main global bifurcation theorem (see [34] for the proof) can be stated as follows.

Theorem 1. Assume that f ∈ C1(R) satisfies f(s)s > 0 for all s ̸= 0, f ′(0) = 1, and, for some
constants κ > 0 and p > 2, |f ′(s)| ≤ κ (|s|p−2 + 1) for all s ∈ R. Moreover, suppose that a satisfies
1∫
0

a(x) dx < 0 and there is z ∈ (0, 1) such that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1).

Then there exist two subsets of S>, C>
0 and C>

λ0
such that

• C>
0 and C>

λ0
are maximal in S> with respect to the inclusion, are connected with respect to the

topology of the strict convergence in BV (0, 1)1, and are unbounded in R× Lp(0, 1);

• (0, 0) ∈ C>
0 and (λ0, 0) ∈ C>

λ0
;

• {(0, r) : r ∈ [0,+∞)} ⊆ C>
0 ;

• if (λ, u) ∈ C>
0 ∪ C>

λ0
and u ̸= 0, then ess inf u > 0;

• if (λ, 0) ∈ C>
0 ∪ C>

λ0
for some λ > 0, then λ = λ0;

• either C>
0 ∩ C>

λ0
= ∅, or (λ0, 0) ∈ C+

0 and (0, 0) ∈ C>
λ0

and, in such case, C>
0 = C>

λ0
;

• there exists a neighborhood U of (0, 0) in R × Lp(0, 1) such that C>
0 ∩ U consists of regular

solutions of (1);

• there exists a neighborhood V of (λ0, 0) in R× Lp(0, 1) such that C>
λ0

∩ V consists of regular
solutions of (1).

Theorem 1 appears to be the first global bifurcation result for a quasilinear elliptic problem
driven by the mean curvature operator in the setting of bounded variation functions. The absence in
the existing literature of any previous result in this direction might be attributable to the fact that
mean curvature problems are fraught with a number of serious technical difficulties which do not

1See [4, Definition 3.14]
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arise when dealing with other non-degenerate quasilinear problems. As a consequence, our proof
of Theorem 1 is extremely delicate, even though the problem (1) is one-dimensional. The main
technical difficulties coming from the eventual lack of regularity of solutions of (1) as they grow,
which does not allow us to work neither in spaces of differentiable functions, nor in Sobolev spaces.
Instead, this lack of regularity forces us to work in the frame of the Lebesgue spaces Lp, where
the cone of positive functions has empty interior and most of the global path-following techniques
in bifurcation theory fail. Thus, to get most of the conclusions of Theorem 1, a number of highly
non-trivial technical issues must be previously overcome. Among them count the reformulation of
(1) as a suitable fixed point equation, the proof of the differentiability of the associated underlying
operator, the search for the most appropriate global bifurcation setting, as well as solving the
tricky problem of the preservation of the positivity of the solutions along both components, for as
in the Lp context a positive solution, a priori, could be approximated by changing sign solutions.
Naturally, none of these rather pathological situations cannot arise when dealing with classical
regular problems, like those considered in [32].

For simplicity, here we have restricted ourselves to deal with the simplest situation when the
function a possesses a single interior node z, and thus the positive solutions of (1) are monotone.
As our proof relies, on a pivotal basis, on this special feature, getting a proof of this theorem in the
general case when a has an intricate nodal behavior might be a real challenge plenty of technical
difficulties. The validity of Theorem 1 in more general settings remains therefore an open problem.
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