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1 Introduction
Consider the second-order nonlinear differential equation

y′′ = p(x, y, y′)|y|k0 |y′|k1 sgn(yy′), k0 > 0, k1 > 0, k0, k1 ∈ R (1.1)

with positive continuous in x and Lipschitz continuous in u, v function p(x, u, v) satisfying the
inequalities

0 < m ≤ p(x, u, v) ≤ M < +∞. (1.2)
The results on the behavior of solutions depending on the nonlinearity exponents k0, k1 and

qualitative properties of solutions was studied in [11].
The asymptoptic behavior of solutions to (1.1) in the case k1 = 0 is described in [5, 6]. In the

case p = p(x) asymptotic behavior of solutions to (1.1) is obtained by V. M. Evtukhov [7]. Using
methods described in [1, 2, 4] by I. V. Astashova, the behavior of solutions to (1.1) near domain
boundaries is considered with respect to the values k0 and k1.

The following definitions are used further.
Definition 1.1 ([4]). A solution y : (a, b) → R, −∞ ≤ a < b ≤ +∞ to an ordinary differential
equation is called a µ-solution if

(1) the equation has no other solutions equal to y on some subinterval (a, b) and not equal to y
at some point in (a, b);

(2) the equation either has no solution equal to y on (a, b) and defined on another interval
containing (a, b) or has at least two such solutions which differ from each other at points
arbitrary close to the boundary of (a, b).

Definition 1.2 ([8]). A solution satisfying at some finite point x∗ the conditions lim
x→x∗

|y′(x)| = ∞,
lim
x→x∗

|y(x)| < ∞ is called a black hole solution.

Definition 1.3 ([9]). A µ-solution satisfying at finite point (its domain boundary) x̃ the conditions
lim
x→x̃

y′(x) = 0 and lim
x→x̃

y(x) ̸= 0 is called a white hole solution.

Definition 1.4 ([10]). A solution to equation (1.1) is called a Kneser solution at decreasing argu-
ment on the interval (−∞;x0) if y(x) > 0, y′(x) > 0 for any x < x0.
Definition 1.5 ([10]). A solution to equation (1.1) is called a negative Kneser solution on the
interval (x0; +∞) if y(x) < 0, y′(x) > 0 for any x > x0.
Definition 1.6 ([10]). A µ-solution y(x) to equation (1.1) is called a singular of the type II at a
point a ∈ R if lim

x→a
y(x) = lim

x→a
y′(x) = 0.
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2 Main results
Lemma 2.1. Let the function p(x, u, v) be continuous in x, Lipschitz continuous in u, v and
satisfying inequalities (1.2). Then all µ-solutions to equation (1.1) are monotonous.

Denote
α =

2− k1
k0 + k1 − 1

, C =
( |α|1−k1 |α+ 1|

p0

) 1
k0+k1−1

.

Theorem 2.1. Suppose k0 + k1 < 1. Let the function p(x, u, v) be continuous in x, Lipschitz
continuous in u, v and satisfying inequalities (1.2). Let there also exist the following limits of
p(x, u, v):

(1) p+ as x → +∞, u → +∞, v → +∞;

(2) p− as x → −∞, u → −∞, v → +∞.

Denote pa = p(a, 0, 0) for any a ∈ R. Then α < −1 and all increasing µ-solutions to equation (1.1)
according to their asymptotic behavior can be divided into three types:

1. Increasing solutions defined on the whole axis with zero at some point x0:

y(x) = C(p−)(x0 − x)−α(1 + o(1)), x → −∞,

y(x) = C(p+)(x− x0)
−α(1 + o(1)), x → +∞.

2. Positive singular solutions defined on semi-axis (a,+∞):

y(x) = C(pa)(x− a)−α(1 + o(1)), x → a+ 0,

y(x) = C(p+)(x− a)−α(1 + o(1)), x → +∞.

3. Negative singular solutions defined on semi-axis (−∞, b):

y(x) = C(p−)(b− x)−α(1 + o(1)), x → −∞,

y(x) = C(pb)(b− x)−α(1 + o(1)), x → b− 0.

Theorem 2.2. Suppose k0 + k1 > 1, k1 < 2. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Let there also exist the following
limits of p(x, u, v):

(1) P a as x → a− 0, u → +∞, v → +∞, for every a ∈ R;

(2) Pa as x → a+ 0, u → −∞, v → +∞, for every a ∈ R;

(3) P+ as x → +∞, u → 0, v → 0;

(4) P− as x → −∞, u → 0, v → 0.

Then α > 0 and all maximally extended increasing solutions to (1.1) according to their asymptotic
behavior can be divided into three types:

1. Increasing solutions with two vertical asymptotes x = x∗ and x = x∗, x∗ < x∗:

y = C(P x∗
)(x∗ − x)−α(1 + o(1)), x → x∗ − 0,

y = −C(Px∗)(x− x∗)
−α(1 + o(1)), x → x∗ + 0.
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2. Kneser solution at decreasing argument defined on semi-axis (−∞, x∗):

y = C(P−)|x|−α(1 + o(1)), x → −∞,

y = C(P x∗
)(x∗ − x)−α(1 + o(1)), x → x∗ − 0.

3. Negative Kneser solutions defined on semi-axis (x∗,+∞):

y = −C(Px∗)(x− x∗)
−α(1 + o(1)), x → x∗ + 0,

y = −C(P+)x
−α(1 + o(1)), x → +∞.

Theorem 2.3. Suppose 0 < k1 < 1. Let the function p(x, u, v) be continuous in x, Lipschitz con-
tinuous in u, v and satisfying inequalities (1.2). Then any maximally extended increasing solution
y(x) to (1.1) is a black hole solution defined on the interval (x∗, x∗), and the limit lim

x→x∗−0
y(x) = y∗

satisfies the following inequalities:

( k0 + 1

M(k1 − 2)

) 1
k0+1

(y′(x0))
− k1−2

k0+1 ≤ |y∗| ≤
( k0 + 1

m(k1 − 2)

) 1
k0+1

(y′(x0))
− k1−2

k0+1 .

The same inequalities hold for the limit y∗ = lim
x→x∗+0

y(x).

Theorem 2.4. Suppose k1 > 2. Let the function p(x, u, v) be continuous in x, Lipschitz continuous
in u, v and satisfying inequalities (1.2). Let there also exist limits p+ as x → +∞, u → −∞, v → 0
and p− as x → −∞, u → −∞, v → 0. Then −1 < α < 0 and any increasing solution to (1.1) has
a zero at some point x0 and has the following asymptotic behavior:

y(x) = −C(p+)(x− x0)
−α(1 + o(1)), x → +∞,

y(x) = C(p−)(x0 − x)−α(1 + o(1)), x → −∞.

Theorem 2.5. Suppose k0 > 0, 1 ≤ k1 < 2. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Then any decreasing solution y(x)
to equation (1.1) is defined on the whole axis, has a zero at some point x0 and has two horizontal
asymptotes y = y+ < 0 at x → +∞ and y = y− > 0 at x → −∞. Moreover,

k0 + 1

M(2− k1)
|y′(x0)|2−k1 ≤ |y±|k0+1 ≤ k0 + 1

m(2− k1)
|y′(x0)|2−k1 .

Theorem 2.6. Suppose k0 > 0, 0 < k1 < 1. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Then any decreasing µ-solution y(x)
to equation (1.1) is defined on a finite interval (x−, x+), has a zero at some point x0 and the limits
y+ = lim

x→x+−0
y(x) and y− = lim

x→x−+0
satisfy the estimate from Theorem 2.5.

Corollary 2.1. Suppose k0 > 0, 0 < k1 < 2. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Then any decreasing solution y(x)
to equation (1.1) is defined on the whole axis and the limits y± = lim

x→±∞
y(x) satisfy the following

inequalities: (m

M

) 1
k0+1 ≤

∣∣∣y+
y−

∣∣∣ ≤ (M
m

) 1
k0+1

.
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