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Let us consider the following system of nonlinear integro-differential equations:
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where
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and a = a(S), f = f(U) and f = f(V ) are given functions, constraints on which will be specified
later.

The above-mentioned system with source terms is based on the well-known system of Maxwell’s
equations [12] by reducing it to the following integro-differential model [4]
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]
, (2)

where H = (H1,H2,H3) is a vector of the magnetic field.
In the rectangle [0, 1]× [0,∞] let us consider the following initial-boundary value problem with

mixed boundary conditions:
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∂x

∣∣∣∣
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= V (0, t) =
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∂x
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= 0, t ≥ 0, (3)

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (4)

where U0 and V0 are given functions.
Study of the models of type (2) have begun in [4]. In that work, in particular, based on Galerkin’s

modified method and compactness arguments as in [14, 18] for nonlinear parabolic equations the
theorems of existence of a solution of the initial-boundary value problem with first kind boundary
conditions for scalar and one-dimensional space case when a(S) = 1 + S and uniqueness for more
general cases are proven. One-dimensional scalar variant for the case a(S) = (1+S)p, 0 < p ≤ 1 is
studied in [2]. Asymptotic behavior as t → ∞ of solutions of initial-boundary value problems for
(2) type models are studied in [3, 6, 7, 9, 13, 16] and in a number of other works as well. In those
works main attention is paid to one-dimensional cases. Finite element analogues and Galerkin’s
method algorithm as well as construction and investigation of semi-discrete and finite difference
schemes for (2) type one-dimensional integro-differential models are studied in [1,5,7–11,13,15–17]
and in other works as well for the linear case of diffusion coefficient.

The following statement is true [5, 8].
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Theorem 1. If a = a(S) ≥ a0 = Const > 0, a′(S) ≥ 0, a′′(S) ≤ 0, f is positively defined and
monotonically increased function, U0, V0 ∈ H1(0, 1), U0(0) =

dU0(x)
dx

∣∣
x=1

= V0(0) =
dV0(x)
dx

∣∣
x=1

= 0,
and problem (1), (3), (4) has a solution, then it is unique and exponential stabilization of solution
as t → ∞ takes place.

On [0, 1]× [0, T ], where T is a positive constant, let us introduce a net with mesh points denoted
by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N with h = 1/M , τ = T/N and let us
consider the finite discrete scheme for problem (1), (3), (4):
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+ f(vj+1
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i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

uj0 = ujx̄,M = vj0 = vjx̄,M = 0, j = 0, 1, . . . , N,

ui(0) = U0,i, vi(0) = V0,i, i = 0, 1, . . . ,M,

(5)

where the well-known notations of forward and backward derivatives are used.
Applying the uj+1

i and vj+1
i multiplicators for the first and second equations of system (5)

respectively, it is not difficult to get the inequalities:

∥un∥2 + τh
n∑

j=1

M∑
i=1

(uji,x̄)
2 < C, ∥vn∥2 + τh

n∑
j=1

M∑
i=1
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2 < C, n = 1, 2, . . . , N. (6)

Here and in what follows C is a positive constant independent of τ and h.
The a priori estimates (6) guarantee the global solvability of problem (5).
The following statement is true.

Theorem 2. If a = a(S) ≥ a0 = Const > 0, a′(S) ≥ 0, a′′(S) ≤ 0, f is positively defined and
monotonically increased function and problem (1), (3), (4) has a sufficiently smooth solution, then
the solution of problem (5) tends to the solution of the continuous problem (1), (3), (4) as h → 0,
τ → 0 and the following estimates are true:

∥uj − U j∥ ≤ C(τ + h), ∥vj − V j∥ ≤ C(τ + h).

We have carried out numerous numerical experiments for problem (1), (3), (4) with different
kinds of right hand sides and initial-boundary conditions. The obtained numerical results are in
accordance to the theoretical findings.
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