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Let m1, . . . ,mn be positive integers. Consider the periodic problem

u(m) = f
(
x, D̃m[u]

)
, (1)

u(x+ ωi) = u(x) (i = 1, . . . , n). (2)

Here x = (x1, . . . , xn), ω = (ω1, . . . , ωn), ωi = (0, . . . , ωi, . . . , 0), m = (m1, . . . ,mn) is a multi-index,

u(m)(x) =
∂m1+···+mnu(x)

∂xm1
1 · · · ∂xmn

n
,

Dm[u] = (u(α))α≤m, D̃m[u] = (u(α))α<m, f ∈ Cω(Rn × Rm+1) and Cω(Rn × Rm+1) is the space
of continuous functions v(x,Z) that are ω-periodic with respect to the variable x, i.e.

v(x+ ωi,Z) = v(x,Z) (i = 1, . . . , n).

By a solution of problem (1),(2) we understand a classical solution, i.e., a function u ∈ Cm
ω (Rn)

satisfying equation (1) everywhere in Rn.
Problems on doubly periodic solutions for hyperbolic equations of the second and fourth orders

were studied in [1–3]. Problem (1), (2) for the case n > 2 remained virtually unstudied until
recently. The linear case of problem (1), (2) was investigated in [4].

Throughout the paper the following notations will be used:
m = (m1, . . . ,mn), α = (α1, . . . , αn).
Rα = Rα1×···×αn .
α = (α1, . . . , αn) < β = (β1, . . . , βn) ⇐⇒ αi ≤ βi (i = 1, . . . , n) and α ̸= β.
α = (α1, . . . , αn) ≤ β = (β1, . . . , βn) ⇐⇒ α < β, or α = β.
0 = (0, . . . , 0), 1 = (1, . . . , 1), 1i = (0, . . . , 0, 1, 0, . . . , 0).
suppα = {i αi > 0}, ∥α∥ = |α1|+ · · ·+ |αn|.
Υm = {α < m : αi = mi for some i ∈ {1, . . . , n}}.
ω = (ω1, . . . , ωn), ωi = (0, . . . , ωi, . . . , 0).
Ω = [0, ω1]× · · · × [0, ωn].
xα = (χ(α1)x1, . . . , χ(αn)xn), where χ(α) = 0 if α = 0, and χ(α) = 1 if α > 0. xα will be

identified with (xi1 , . . . , xil), where {i1, . . . , il} = suppα.
Z = (zα)α<m; fα(x,Z) = ∂f(x,Z)

∂zα
.

The variables zα (α ∈ Υm) are called principal phase variables of the function f(x,Z).
Cm(Ω) is the Banach space of functions u : Ω → R, having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm(Ω) =
∑
α≤m

∥u(α)∥C(Ω).
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Cm
ω (Rn) is the Banach space of ω-periodic continuous functions, i.e. functions that are ωi-

periodic with respect to the variable xi (i = 1, . . . , n), having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm
ω

=
∑
α≤m

∥u(α)∥C(Ω).

C̃m
ω (Rn) is the Banach space of ω-periodic continuous functions, i.e. functions that are ωi-

periodic with respect to the variable xi (i = 1, . . . , n), having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm
ω

=
∑
α<m

∥u(α)∥C(Ω).

If z0 ∈ C̃m
ω (Rn) and r > 0, then

B̃m
ω (z0; r) =

{
z ∈ C̃m

ω (Rn) : ∥z − z0∥C̃m
ω

≤ r
}
.

Cm,k
ω (Rn×Rβ) the space of continuous functions v(x,Z) such that v( · ,Z) ∈ Cm

ω (Rn) for every
Z ∈ Rβ and v(x, · ) ∈ Ck(Rβ) for every x ∈ Rn.

Let p0α ∈ Cω(Rn) (α < m) and let z ∈ Cm
ω (Rn) be an arbitrary function. Along with the

equation (1) consider the following equations

u(m) =
∑
α<m

pλα[z](x)u
(α) + q(x), (3)

u(m) =
∑
α<m

pλα[z](x)u
(α), (4)

and

u(m) = (1− λ)
∑
α<m

p0α(x)u
(α) + λf

(
x, D̃m[u]

)
, (5)

where λ ∈ [0, 1], pα[z](x) = fα(x, D̃m[z](x)), and

pλα[z](x) = (1− λ)p0α(x) + λpα[z](x).

Definition 1. Let the function f(x,Z) be continuously differentiable with respect to the phase
variables v. We say that problem (1), (2) to is strongly (u0, r)-well-posed, if:

(I) it has a solution u0(x);

(II) in the neighborhood B̃m
ω (u0; r) u0 is the unique solution;

(III) there exists ε0 > 0, δ0 > 0 and M0 > 0 such that for any δ ∈ (0, δ0), and f̃(x,Z) satisfying
the inequalities ∑

α<m

∣∣fα(x,Z)− f̃α(x,Z)
∣∣ < ε0, (6)∣∣f(x,Z)− f̃(x,Z)
∣∣ < δ (7)
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in the neighborhood B̃m
ω (u0; r) the problem

u(m) = f̃(x, D̃m[u]),

u(x+ ωi) = u(x) (i = 1, . . . , n)

has a unique solution ũ and
∥u− ũ∥Cm

ω
< M0δ.

Definition 2. Problem (1), (2) is called strongly well-posed if it is strongly (u0, r)-well-posed for
every r > 0.

Theorem 1. Let the function f(x, Z) be continuously differentiable with respect to the phase
variables, and let there exist a positive number M0 such that

|fα(x, Z)| ≤ M0 for (x, Z) ∈ Rn × Rm+1.

Furthermore, let for arbitrary z ∈ Cm
ω (Rn) and λ ∈ [0, 1) problem (3), (2) be well–posed and its

solution uλ admit the estimate
∥uλ∥Cm

ω
≤ M∥q∥Cω ,

where M is a positive number independent of λ, z and q. Then problem (1), (2) is strongly well–
posed.

Consider the “perturbed” equation

u(m) = f(x, D̃m[u]) + q(x,Dm-1[u]). (8)

Theorem 2. Let the function f satisfy all of the conditions of Theorem 1, and let q ∈ Cω(Rn×Rm)
be such that

lim
∥Z∥→+∞

|q(x,Z)|
∥Z∥

= 0 (9)

uniformly on Rn × Rm. Then problem (8), (2) has at least one solution

Theorem 3. Let the function f(x, Z) be continuously differentiable with respect to the phase
variables, and let there exist a positive number M and a nondecreasing continuous function η :
[0,+∞) → [0,+∞), η(0) = 0 such that:

(i) for every λ ∈ [0, 1) an arbitrary solution uλ of problem (5), (2) admits the estimates

uλ ∈ B̃m
ω (0;M), ∥wλ δ∥Cm

ω
≤ η(|δ|),

where wλ δ(x) = uλ(x+ δ)− uλ(x);

(ii) problem (4), (2) is well–posed for every λ ∈ [0, 1) and z ∈ Cm
ω (Rn) , ∥z∥Cm

ω
≤ M ;

(iii) problem (4), (2) has only the trivial solution for λ = 1 and arbitrary z ∈ Cm
ω (Rn), ∥z∥Cm

ω
≤ M .

Then problem (1), (2) has a solution u0 ∈ B̃m
ω (0;M), and it is strongly strongly (u0, r) well-posed

for some r > 0.
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Consider the equations of even and odd orders:

u(2m) =
∑

α,β≤m

(
pα+β

(
x,Dα[u]

)
u(α)

)(β)
+ q(x,Dm-1[u]), (10)

u(2m) =
∑
α≤m

(
pα

(
x,Dα[u]

)
u(α)

)(α)
+ q(x,Dm-1[u]) (11)

and

u(2m+1n) =
∑

α,β≤m

(
pα+β+1n(x,Dα+1n [u]))(β) +

∑
α≤m

p2α(x̂α)u
(2α) + q(x,Dm-1[u]). (12)

Theorem 4. Let pα+β ∈ C
β,∥β∥
ω (Rn×Rα+1) (α,β ≤ m), and let q ∈ Cω(Rn×Rm) satisfy equality

(9) uniformly on Rn × Rm. Furthermore, let there exist δ > 0 such that∑
α,β≤m

(−1)∥m∥+∥β∥−1pα+β(x,Z)vαvβ ≥ δ
∑
α≤m

v2α for (x,Z) ∈ Rn × R2m+1.

Then problem (10), (2) has at least one solution.

Corollary 1. Let pα ∈ C
α,∥α∥
ω (Rn × Rα+1) (α ≤ m), and let q ∈ Cω(Rn × Rm) satisfy equality

(9) uniformly on Rn × Rm. Furthermore, let there exist δ > 0 such that

(−1)∥m∥+∥α∥−1pα(x,Z) ≥ δ for (x,Z) ∈ Rn × R2m+1 (α ≤ m).

Then problem (11), (2) has at least one solution.

Theorem 5. Let pα+β ∈ C
β,∥β∥
ω (Rn×Rα+1) (α,β ≤ m), and let q ∈ Cω(Rn×Rm) satisfy equality

(14) uniformly on Rn × Rm. Furthermore, let there exist δ > 0 such that∑
α,β≤m

(−1)∥m∥+∥β∥−1pα+β+1n(x,Z)zα zβ ≥ δ
∑
α≤m

z2α for (x,Z) ∈ Rn × R2m+1

and
(−1)∥α∥σp2α(x̂α) ≥ δ for x ∈ Rn (α ≤ m).

Then problem (12), (2) has at least one solution.

Remark 1. In Theorems 1–3 continuous differentiability of the function f(x,Z) with respect to the
phase variables Z can be replaced by Lipschitz continuity, although that will make the formulation
of the theorems more cumbersome. However, Lipschitz continuity of the function f(x,Z) with
respect to the principal phase variables zα (α ∈ Υm) is essential and cannot be replaced by Hölder
continuity with the exponent γ ∈ (0, 1).

As an example consider the two–dimensional problem

u(2,2) = u(2,0) + u(0,2) − δ1−γ |u(0,2) − u|γ sgn(u(0,2) − u)− u− sinx2, (13)
u(x1 + 2π, x2) = u(x1 + 2π, x2), u(x1, x2 + 2π) = u(x1, x2) (14)

where δ ≥ 0 and γ ∈ (0, 1).
Let u be a solution of problem (10), (11). Set:

v(x1, x2) = u(0,2)(x1, x2)− u(x1, x2). (15)
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Then v is a solution of the problem

v(2,0) = v − δ1−γ |v|γ sgn(v)− sinx2, (16)
v(x1 + 2π, x2) = v(x1, x2). (17)

If δ = 0, then it is clear that problem (16), (17) is a uniquely solvable linear periodic problem
with the solution

v(x1, x2) ≡ sinx2,

and problem (10), (11) is a well–posed linear problem with the solution

u(x1, x2) ≡ u(x2) =

x2∫
x2−2π

cosh(x2 − t− π)

2 sinh(π)
sin t dt.

Let us show that problem (10), (11) has no classical solutions for sufficiently small δ > 0. For
that it is sufficient to show that for sufficiently small δ > 0 problem (16), (17) has no solution that
is continuous with respect to x2.

Problem (16), (17) is a periodic problem for an ordinary differential equation depending on the
parameter x2. It has a solution v(x1, x2) ≡ v∗(x2), where, for every x2, v∗(x2) is the root of the
equation

v − δ1−γ |v|γ sgn(v)− sinx2 = 0. (18)

One can easily show that problem (16), (17) is solvable for every x2 if δ ∈ (0, 1). Moreover, if
δ ∈ (0, 2

1
γ−1 ), then problem (16), (17) is uniquely solvable for x2 = π

2 , and its solution is positive.
The latter fact implies that v∗(π2 ) > δ.

Let δ ∈
(
0, 2

1
γ−1

)
, and let v(x1, x2) be a solution of problem (16), (17) that is a continuous

function of x2. Then v(x1,
π
2 ) = v∗(π2 ) > δ. Due to continuity there exists ε > 0 such that

v(x1, x2) ≥ δ for x2 ∈
[π
2
− ε,

π

2
+ ε

]
⊂ (0, π). (19)

But then problem (16), (17) is uniquely solvable for x2 ∈ [π2 − ε, π2 + ε]. Indeed, let v1(x1) ≥ δ
and v2(x1) ≥ δ be arbitrary solutions of problem (16),(17) for some x2 ∈ [π2 − ε, π2 + ε]. Then
v(x1) = v2(x1)− v1(x1) is a solution of the problem

v′′ = (1− θ(x1, x2))v, v(x1 + 2π) = v(x1), (20)

where

θ(x1, x2) = γ

1∫
0

δ1−γ

(v1(x1, x2) + (1− t)(v2(x1, x2)− v1(x2, x1)))1−γ
dt ≤ γ < 1. (21)

The latter inequality implies that problem (20) has only the trivial solution, i.e. problem (16), (17)
is uniquely solvable. Consequently, v(x1, x2) = v∗(x2) for x2 ∈ [π2 − ε, π2 + ε]. However, it is easy
to see that a positive root of equation (18) is strictly bigger than δ for x2 ∈ (0, π). Hence

v(x1, x2) = v∗(x2) > δ for x2 ∈
[π
2
− ε,

π

2
+ ε

]
⊂ (0, π). (22)

From (19)–(22) one can easily deduce that

v(x1, x2) = v∗(x2) > δ for x2 ∈ (0, π). (23)
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Similarly one can show that

v(x1, x2) = v∗(x2) < −δ for x2 ∈ (−π, 0). (24)

(23) and (24) imply that v∗(0+) = δ and v∗(0−) = −δ. Thus v(x1, x2) ≡ v∗(x2) is discontinuous
at 0. Consequently, problem (13), (14) has no classical solutions for sufficiently small δ ∈ (0, 2

1
γ−1 ).

This is the result of the fact that the righthand side of equation (13) is not Lipschitz continuous
with respect to the principal phase variables, but instead is a Hölder continuous function with the
exponent γ ∈ (0, 1).

Remark 2. The aforementioned example also demonstrates that:

(A) Condition (6) in Definition 1 is optimal and cannot be relaxed;

(B) Only inequality (7), without inequality (6) does not guarantee even solvability of a perturbed
problem.
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