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1 Notation and preliminaries
Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis (see, e.g. [5]), where Ω is a set of elementary probability
events, F is a σ-algebra of all events on Ω, (Ft)t≥0 is a right continuous family of σ-subalgebras
of F , P is a probability measure on F ; all the above σ-algebras are assumed to be complete with
respect to (w.r.t. in what follows) the measure P , i.e. they contain all subsets of zero measure; the
symbol E stands for the expectation related to the probability measure P .

In the sequel, we use an arbitrary yet fixed norm | · | in Rn, the real-valued index p satisfying
the assumption 0 ≤ p ≤ ∞ and a continuous positive function γ(t) defined for all t ≥ 0.

By Z = (z1, . . . , zm)T we denote an m-dimensional semimartingale (see, e.g. [5]). A most popu-
lar particular case of Z is the standard Brownian motion (the Wiener process) B = (B1, . . . ,Bm)T .

The general linear stochastic functional differential equation is defined as follows (see, e.g. [2]):

dx(t) = (V x)(t) dZ(t) (t ≥ 0), (1.1)

and the initial condition reads in this case as

x(0) = x0 ∈ Rn. (1.2)

Here V is a k-linear Volterra operator (see below), which is defined in certain linear spaces of
vector-valued stochastic processes.

By the k-linearity of the operator V we mean the property

V (α1x1 + α2x2) = α1V x1 + α2V x2,

which holds for all F0-measurable, bounded and scalar random values α1, α2 and all stochastic
processes x1, x2 belonging to the domain of the operator V .

According to the paper [3] the following classes of linear stochastic equations can be rewritten
in the form (1.2):

(a) Systems of linear ordinary (i.e. non-delay) stochastic differential equations driven by an
arbitrary semimartingale (in particular, systems of ordinary Itô equations);
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(b) Systems of linear stochastic differential equations with discrete delays driven by a semimartin-
gale (in particular, systems of Itô equations with discrete delays);

(c) Systems of linear stochastic differential equations with distributed delays driven by a semi-
martingale (in particular, systems of Itô equations with distributed delays);

(d) Systems of linear stochastic integro-differential equations driven by a semimartingale (in
particular, systems of Itô integro-differential equations);

(e) Systems of linear stochastic functional difference equations driven by a semimartingale (in
particular, systems of Itô functional difference equations).

2 Lyapunov stability and M-stability
In this section we study different kinds of stochastic Lyapunov stability of the zero solution of the
linear equation (1.1) with respect to the initial data (1.2). Let us start with the precise definitions.

Definition 2.1. The zero solution of the equation (1.1) is called

1. weakly stable in probability if for any ε > 0, δ > 0 there is η(ε, δ) > 0 such that P{ω ∈ Ω :
|x(t, x0)| > ε} < δ for all |x0| < η and t ≥ 0;

2. asymptotically weakly stable in probability if it is weakly stable in probability and if, in addi-
tion, for any ε > 0 and all x0 ∈ Rn one has

P
{
ω ∈ Ω : |x(t, x0)| > ε

}
−→ 0 as t → +∞;

3. stable in probability if for any ε, δ > 0 there is η(ε, δ) > 0 such that

P
{
ω ∈ Ω : sup

t≥0
|x(t, x0)| > ε

}
< δ for all |x0| < η;

4. asymptotically stable in probability if it is stable in probability and if, in addition, for any
ε > 0 and all x0 ∈ Rn one has P{ω ∈ Ω : |x(t, x0)| > ε} → 0 as t → +∞;

5. p-stable if for any ε > 0 there is η(ε) > 0 such that |x0| < η implies E|x(t, x0)|p ≤ ε for all
t ≥ 0;

6. asymptotically p-stable if it is p-stable and, in addition, lim
t→+∞

E|x(t, x0)|p = 0 for all x0 ∈ Rn;

7. exponentially p-stable if there exist positive constants K, β such that the inequality

E|x(t, x0)|p ≤ K|x0|p exp{−βt}

holds true for all t ≥ 0 and all x0 ∈ Rn;

8. stable with probability 1 if sup
t≥0

|x(t, xν)| → 0 with probability 1 whenever |xν | → 0 as ν → +∞;

9. asymptotically stable with probability 1 if it is stable with probability 1 and if, in addition,
|x(t, x0)| → 0 as t → +∞ for all x0 ∈ Rn;
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10. strongly stable with probability 1 if for any ε > 0 there exists η(ε) > 0 such that

P
{
ω ∈ Ω : sup

t≥0
|x(t, x0)| ≤ ε

}
= 1

whenever |x0| < η;

11. strongly asymptotically stable with probability 1 if it is strongly stable with probability 1 and
if, in addition, for any ε > 0, x(t, x0) tends to 0 with probability 1 as t → +∞ for all x0 ∈ Rn.

Remark 2.2. The initial condition x0 can also be random. In this case the norm of x0 should be
adjusted accordingly.

For brevity, we will also write “the equation (1.1) is stable” in a certain sense instead of “the
zero solution of the equation (1.1) is stable” in this sense.

In the sequel the following linear spaces of stochastic processes will be used:

- Ln(Z) consists of all predictable n ×m-matrix stochastic processes on [0,+∞), the rows of
which are locally integrable w.r.t. the semimartingale Z (see, e.g. [5]);

- Dn consists of all n-dimensional stochastic processes on [0,+∞), which can be represented as

x(t) = x(0) +

t∫
0

H(s) dZ(s),

where x(0) ∈ Rn, H ∈ Ln(Z).

In addition to Lyapunov stability, one can consider the so-called “M -stability”.

Definition 2.3. Let x( · , x0) be the solution of the initial value problem (1.1)–(1.2) defined on
[0,∞) and M be a certain subspace of the space Dn. We say that the equation (1.1) is M -stable
if x( · , x0) ∈ M for any x0 ∈ Rn.

The spaces below (“M -spaces”) are crucial for studying the stochastic Lyapunov stabilities
listed above.

- Mγ
0 =

{
x : x ∈ Dn such that for any δ > 0 there is K > 0,

for which sup
t≥0

P
{
ω : ω ∈ Ω, |γ(t)x(t)| > K

}
< δ

}
;

- M̂ γ
0 =

{
x : x ∈ Dn such that for any δ > 0 there is K > 0,

for which P
{
ω : ω ∈ Ω, sup

t≥0
|γ(t)x(t)| > K

}
< δ

}
;

- Mγ
p =

{
x : x ∈ Dn, sup

t≥0
E|γ(t)x(t)|p < ∞

}
(0 < p < ∞);

- M̂ γ
p =

{
x : x ∈ Dn, E sup

t≥0
|γ(t)x(t)|p < ∞

}
(0 < p < ∞);

- Mγ
∞ = M̂ γ

∞ =
{
x : x ∈ Dn, ess sup

(t,ω)∈[0,+∞[×Ω
|γ(t)x(t)| < ∞

}
;

For γ(t) = 1 (t ≥ 0) we also put
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- M1
p = Mp and M̂ 1

p = M̂p (0 ≤ p ≤ ∞).

Let B be a linear subspace of the space Ln(Z) equipped with some norm ∥ · ∥B. For a given
positive and continuous function γ(t) (t ∈ [0,∞)) we define Bγ = {f : f ∈ B, γf ∈ B}. The
latter space becomes a linear normed space if we put ∥f∥Bγ := ∥γf∥B. By this, the linear spaces
Mγ

p , M̂ γ
p become normed spaces if 1 ≤ p ≤ ∞.

Remark 2.4. The above spaces can also be described as follows. Let L∞(X) be the space consisting
of all essentially bounded functions g : [0,∞) → X, while Lp(Y ) be the space of measurable
(p = 0), p-integrable (0 < p < ∞), essentially bounded (p = ∞) functions h : Ω → Y , where
X and Y are arbitrary separable Banach spaces. Then it is easy to see that Mγ

p = L∞(Lp(R
n))

and M̂ γ
p = Lp(L∞(Rn)) for all 0 ≤ p ≤ ∞ and an arbitrary positive and continuous function

γ : [0,∞) → R. This means that the above list of the M -spaces covers all possible combinations
of Lebesgue spaces with respect to the variable ω ∈ Ω and spaces of essentially bounded functions
with respect to the variable t ∈ [0,∞). As we will see, this list covers also all types of stochastic
Lyapunov stability described in Definition 2.1.

Below we use the following assumptions on a continuous positive function γ(t), t ∈ [0,∞):
Property γ1: the function γ satisfies the conditions γ(t) ≥ σ (t ∈ [0,+∞)), σ > 0 and

lim
t→+∞

γ(t) = +∞.

Property γ2: γ(t) = exp{βt} for some β > 0.

The theorem below describes relationships between the different kinds of the stochastic Lya-
punov stability and the associated M -stabilities.

Theorem 2.5. The following statements are valid for the equation (1.1):

1. weak stability in probability is equivalent to the M0-stability;

2. weak asymptotic stability in probability is equivalent to the Mγ
0 -stability for some γ satisfying

Property γ1;

3. stability in probability is equivalent to the M̂0-stability;

4. if 0 < p < ∞, then p-stability is equivalent to the Mp-stability;

5. if 0 < p < ∞, then asymptotic p-stability is equivalent to the Mγ
p -stability for some γ satisfying

Property γ1;

6. if 0 < p < ∞, then exponential p-stability is equivalent to the Mγ
p -stability for some γ

satisfying Property γ2;

7. stability with probability 1 is equivalent to the M̂0-stability;

8. strong stability with probability 1 is equivalent to the M∞-stability;

9. strong asymptotic stability with probability 1 is equivalent to the Mγ
∞-stability for some γ

satisfying Property γ1.

Using these results we can study relationships between different kinds of stochastic Lyapunov
stability and M -stability.

Corollary 2.6. Let p ∈ [0,∞]. Then the following are valid for the stochastic functional differential
equation (1.1):
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1. M̂p-stability implies stability with probability 1;

2. M̂ γ
p -stability with γ satisfying Property γ1 implies asymptotic stability with probability 1.

3. M̂ γ
∞-stability with γ satisfying Property γ1 implies strong asymptotic stability with probabili-

ty 1.

Corollary 2.7. For the equation (1.1) we have:

1. if 0 < q < p < ∞, then p-stability (resp. asymptotic, exponential p-stability) implies q-stability
(resp. asymptotic, exponential q-stability);

2. if 0 < p < ∞, then p-stability (resp. asymptotic p-stability) implies weak stability in probability
(resp. weak asymptotic stability in probability);

3. stability in probability (resp. asymptotic stability in probability) implies weak stability with
probability 1 (resp. weak asymptotic stability with probability 1).

4. stability in probability is equivalent to stability with probability 1.

The proof of the theorem and the corollaries as well as some applications can be found in [4].

References
[1] N. V. Azbelev and P. M. Simonov, Stability of Differential Equations with Aftereffect. Stability

and Control: Theory, Methods and Applications, 20. Taylor & Francis, London, 2003.
[2] R. I. Kadiev, Stability of solutions of stochastic functional differential equations. (Russian)

Habilitation thesis, Jekaterinburg, 2000.
[3] R. I. Kadiev and A. V. Ponosov, Stability of linear stochastic functional-differential equations

with constantly acting perturbations. (Russian) Differentsial�nye Uravneniya 28 (1992), no. 2,
198–207; translation in Differential Equations 28 (1992), no. 2, 173–179.

[4] R. Kadiev and A. Ponosov, Lyapunov stability of the generalized stochastic pantograph equa-
tion. J. Math. 2018, Art. ID 7490936, 9 pp.

[5] R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales. Translated from the Russian by
K. Dzjaparidze [Kacha Dzhaparidze]. Mathematics and its Applications (Soviet Series), 49.
Kluwer Academic Publishers Group, Dordrecht, 1989.


