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In the domain Dy : 0 < x <, 0 <t < T consider the following mixed problem

Ut — Uy + AUy + Bug + Cu+ f(x,t,u) = F(x,t), (x,t) € Dr, (1)
u(w,0) = p(@), uil,0) = b(x), 0<z <1, @)
(Mug + Nug + Su)(0,t) =0, wu(l,t)=0, 0<t<T, (3)

where A, B, C, M, N, S are given n-th order quadratic real matrix-functions; f = (fi,..., fn),
F = (F,....F,), ¢ = (p1,...,n) and b = (Y1,...,%,) are given and u = (u,...,u,) is an
unknown real vector-functions, n > 2.

Below we consider the problem (1)—(3) in a classical statement, when its regular solution is
searched in the class C?(Dr) and it is supposed that the problem data have corresponding smooth-
ness and in the points (0,0) and ([,0) satisfy second order agreement conditions.

Divide the domain D;, being a quadrat with the center in 01(2, 2) into four triangles:

D} := 00,0y, D} := 00,03, D} := 050,04, D} := 030,04,

where

0 =(0,0), Os=(1,0), O3=(0,0), O4=(L1).

Assuming that
det(M — N)(0,t) #0, 0<t <,

the problem (1)—(3) can be equivalently reduced to the Volterra type nonlinear integro-differential
equation with respect to variable ¢ by using the methods of Riemann matrices-functions and Lapla-
cian invariants

u(x,t) = (Tu)(x,t), (z,t) € Dy,

where

(Tw)(z,t) = x| (z,t)p(x — t) + x5 (2, t)p(x + t)
+ [ [k 6 p(©) + At (o] de

+ / Ky(a, 66,0 [F(€.m) — F(€n,w)] dedy, PY(x,t) € D}, (4)



International Workshop QUALITDE — 2018, December 1 — 3, 2018, Tbilisi, Georgia 73

where P} = (z —t,0), Py = (z +,0), D}, is a triangle P} P'Py;

(Tu)(z,t) = X3 (2, )(0) + X2(x, ) p(t — ) + X3 (=, 1)p(t + )

+ [ M 506(€) + Bt )u(o)] de

op?

+ / Kz, t:6,m) [F(€.m) — f(€.m,0)] dedny, P*(x,1) € D?, (5)
D2,

where P = (0,t — ), P§ = (t +x,0), D2, is a quadrangle OP? PP,

(Tu)(z,t) = x> (2, )p(x — t) + x3(x, ) (2 — z — )

[ [ 60O + Mt (o] de

P1301

+ / Ks(z,t:6,) [F(€.m) — f(€.m,0)] dedn, P*(x,1) € D}, (6)
D3,

where P} = (z —t,0), P§ = (l,a +t—1), D3, is a quadrangle P3P}O P};

(Tu)(z,t) = X3 (2, 1)9(0) + X3 (z, ) p(t — ) + X5 (z, 1) p(2 — 2 — 1)

+ [ (A 5 OpE) + At (o] de

001

4 / Ki(x,t:6,0) [F(€.n) — F(€.m,w)] dEdy, P(x.t) € D}, (7)
B!,

where P! = (0,t —2), P{ = (l,x +t — 1), Dé,t is a quadrangle P*POO; P}; everywhere here Xf,
Ai and K;,1=1,2,3,k=1,2, j =1,2,3,4 are well-known defined matrices.
For f = 0 the formulas (4)—(7) give the solution of the posed linear problem in quadratures.
Notice, on supposition that f € C1(D4 x R) the problem (1)-(3) is locally always solvable, i.e.
there exists a number Ty = Ty (F, ¢, 1) > 0 such that for T < Tj the problem is solvable in domain
Dr. Besides, without additional requirements on the increment of nonlinearity of vector-function

f and its structure, the problem (1)—(3) may not have a solution.



