Theorems on Functional Differential Inequalities

Robert Hakl

Institute of Mathematics, Czech Academy of Sciences, Brno Branch, Brno, Czech Republic E-mail: hakl@ipm.cz

Consider the system of functional differential inequalities

$$\mathcal{D}(\sigma(t))\left[u'(t) - \ell(u)(t)\right] \ge 0 \quad \text{for a.e.} \quad t \in [a, b], \tag{1}$$

$$\varphi(u) \ge 0, \tag{2}$$

where $\ell : C([a,b];\mathbb{R}^n) \to L([a,b];\mathbb{R}^n)$ is a linear bounded operator, $\varphi : C([a,b];\mathbb{R}^n) \to \mathbb{R}^n$ is a linear bounded functional, $\sigma = (\sigma_i)_{i=1}^n, \sigma_i : [a,b] \to \{-1,1\}$ are functions of bounded variation, and $\mathcal{D}(\sigma(t)) = \operatorname{diag}(\sigma_1(t), \ldots, \sigma_n(t))$. In the present contribution, we establish conditions guaranteeing that every absolutely continuous vector-valued function u satisfying (1) and (2) admits also the inequality $u(t) \geq 0$ for $t \in [a,b]$. For this purpose we will need the following notation and definitions.

 \mathbb{R} is a set of all real numbers, $\mathbb{R}_+ = [0, +\infty[, \mathbb{R}^n]$ is a space of *n*-dimensional column vectors $x = (x_i)_{i=1}^n$ with elements $x_i \in \mathbb{R}$ (i = 1, ..., n), $\mathbb{R}^{n \times n}$ is a space of $n \times n$ -matrices $X = (x_{ij})_{i,j=1}^n$ with elements $x_{ij} \in \mathbb{R}$ (i, j = 1, ..., n), \mathbb{R}^n_+ and $\mathbb{R}^{n \times n}_+$ are sets of non-negative column vectors and matrices, respectively. The inequalities between vectors and matrices are understood componentwise. If 0 and 1 are used as vectors, then 0 is a zero column vector and 1 is a column vector with all components equal to one; δ_{ik} is the Kronecker's symbol; X^{-1} is the inverse matrix to X; r(X) is the spectral radius of the matrix X; Θ is a zero matrix.

 $C([a,b];\mathbb{R}^n)$ is a Banach space of continuous vector-valued functions $x = (x_i)_{i=1}^n : [a,b] \to \mathbb{R}^n$ endowed with the norm

$$||x||_C = \max\left\{\sum_{i=1}^n |x_i(t)|: t \in [a, b]\right\}.$$

 $AC([a,b];\mathbb{R}^n)$ is a set of absolutely continuous vector-valued functions $x:[a,b] \to \mathbb{R}^n$.

 $L([a,b];\mathbb{R}^n)$ is a Banach space of Lebesgue integrable vector-valued functions $p = (p_i)_{i=1}^n : [a,b] \to \mathbb{R}^n$ endowed with the norm

$$|p||_L = \int_a^b \sum_{i=1}^n |p_i(s)| \, ds.$$

$$\begin{split} \mathcal{L}^n_{ab} \text{ is a set of linear bounded operators } \ell &: C([a,b];\mathbb{R}^n) \to L([a,b];\mathbb{R}^n).\\ \mathcal{C}^{n,*}_{ab} \text{ is a set of linear bounded functionals } \varphi &: C([a,b];\mathbb{R}^n) \to \mathbb{R}^n. \end{split}$$

For any $\ell \in \mathcal{L}^n_{ab}$, the operators $\ell_i : C([a,b];\mathbb{R}^n) \to L([a,b];\mathbb{R})$ and $\ell_{ik} : C([a,b];\mathbb{R}) \to L([a,b];\mathbb{R})$ $(i,k=1,\ldots,n)$ are defined as follows:

- for any $v \in C([a, b]; \mathbb{R}^n)$, $\ell_i(v)$ is the *i*-th component of the vector-valued function $\ell(v)$;
- for any $z \in C([a, b]; \mathbb{R})$ we put $\ell_{ik}(z) = \ell_i(\widehat{z})$, where $\widehat{z} = (\delta_{ik} z)_{i=1}^n$.

For any functional $\varphi \in \mathcal{C}_{ab}^{n,*}$ we define the functionals $\varphi_i : C([a,b];\mathbb{R}^n) \to \mathbb{R}$ and $\varphi_{ik} : C([a,b];\mathbb{R}) \to \mathbb{R}$ in a similar way. Moreover, we put $\Phi = (\varphi_{ik}(1))_{i,k=1}^n$.

Definition 1. An operator $\ell \in \mathcal{L}^n_{ab}$ is said to be σ -positive if the relation

$$\mathcal{D}(\sigma(t))\ell(u)(t) \ge 0 \text{ for a.e. } t \in [a,b]$$
(3)

is fulfilled whenever $u \in C([a, b]; \mathbb{R}^n)$ is such that

$$u(t) \ge 0 \quad \text{for} \quad t \in [a, b] \tag{4}$$

holds. A set of σ -positive operators is denoted by $\mathcal{P}^n_{ab}(\sigma)$.

Definition 2. We will say that an operator $\ell \in \mathcal{L}^n_{ab}$ belongs to the set $\mathcal{P}^{n,+}_{ab}(\sigma)$ if the relation (3) is fulfilled whenever $u \in AC([a,b];\mathbb{R}^n)$ is such that (4) and

$$\mathcal{D}(\sigma(t))u'(t) \ge 0 \text{ for a.e. } t \in [a, b]$$
(5)

hold.

Remark 1. Obviously, $\mathcal{P}^n_{ab}(\sigma) \subsetneq \mathcal{P}^{n,+}_{ab}(\sigma)$.

Definition 3. We will say that a pair of operators $(\ell, \varphi) \in \mathcal{L}^n_{ab} \times \mathcal{C}^{n,*}_{ab}$ belongs to the set $\mathcal{S}^n_{ab}(\sigma)$ if every function $u \in AC([a, b]; \mathbb{R}^n)$ satisfying (1), (2) admits also (4).

Remark 2. Obviously, if $(\ell, \varphi) \in \mathcal{S}^n_{ab}(\sigma)$, then the problem

$$u'(t) = \ell(u)(t) + q(t)$$
 for a.e. $t \in [a, b], \quad \varphi(u) = c$

has a unique solution $u \in AC([a, b]; \mathbb{R}^n)$ for every $q \in L([a, b]; \mathbb{R}^n)$ and $c \in \mathbb{R}^n$, and this solution is non-negative if $\mathcal{D}(\sigma(t))q(t) \ge 0$ for a. e. $t \in [a, b]$ and $c \ge 0$.

In the formulation of the main results, the inclusion $(0, \varphi) \in S^n_{ab}(\sigma)$ is used. Therefore, we present here some basic implication of this inclusion.

Proposition 1. Let $(0, \varphi) \in S^n_{ab}(\sigma)$. Then

- (i) det $\Phi \neq 0$,
- (ii) $\Phi^{-1} \ge \Theta$.

Proposition 2. Let $(0, \varphi) \in S_{ab}^n(\sigma)$ and let $u \in AC([a, b]; \mathbb{R}^n)$ satisfy (5). Then

$$u(t) \ge \Phi^{-1}\varphi(u) \text{ for } t \in [a, b].$$

Main results

Theorem 1. Let $\ell \in \mathcal{P}^n_{ab}(\sigma)$, $(0, \varphi) \in \mathcal{S}^n_{ab}(\sigma)$. Then $(\ell, \varphi) \in \mathcal{S}^n_{ab}(\sigma)$ iff there exists $\gamma \in AC([a, b]; \mathbb{R}^n)$ such that

$$\mathcal{D}(\sigma(t))[\gamma'(t) - \ell(\gamma)(t)] \ge 0 \text{ for a.e. } t \in [a, b],$$

$$\gamma(t) > 0 \text{ for } t \in [a, b], \quad \Phi^{-1}\varphi(\gamma) > 0.$$

Proof. Necessity: If $(\ell, \varphi) \in \mathcal{S}^n_{ab}(\sigma)$, then according to Remark 2 the problem

is uniquely solvable. Moreover, $u(t) \ge 0$ for $t \in [a, b]$. Put $\gamma(t) = u(t) + 1$ for $t \in [a, b]$. Then

$$\begin{aligned} \mathcal{D}(\sigma(t))\big[\gamma'(t)-\ell(\gamma)(t)\big]&=0 \ \text{for a.e.} \ t\in[a,b],\\ \gamma(t)>0 \ \text{for} \ t\in[a,b], \quad \Phi^{-1}\varphi(\gamma)=\Phi^{-1}(\varphi(u)+\Phi\cdot 1)>0. \end{aligned}$$

Sufficiency: Let u satisfy (1), (2) with $u_j(t_j) < 0$ for some $j \in \{1, \ldots, n\}$ and $t_j \in [a, b]$. Put

$$\lambda_i = \max\left\{-\frac{u_i(t)}{\gamma_i(t)}: t \in [a,b]\right\} \ (i = 1,\dots,n)$$

and let

$$\lambda = \max\left\{\lambda_1, \ldots, \lambda_n\right\} > 0.$$

Then $w(t) \stackrel{def}{=} \lambda \gamma(t) + u(t) \ge 0$ for $t \in [a, b]$, and there exist $i_0 \in \{1, \ldots, n\}$ and $t_0 \in [a, b]$ such that $w_{i_0}(t_0) = \lambda \gamma_{i_0}(t_0) + u_{i_0}(t_0) = 0$. Consequently,

$$\mathcal{D}(\sigma(t))w'(t) \ge \mathcal{D}(\sigma(t))\ell(w)(t) \ge 0$$
 for a.e. $t \in [a, b]$.

According to Proposition 2,

$$w(t) \ge \Phi^{-1}\varphi(w) = \Phi^{-1}(\lambda\varphi(\gamma) + \varphi(u)) > 0,$$

a contradiction.

Theorem 2. Let ℓ admit the representation $\ell = \ell^+ - \ell^-$ where $\ell^+, \ell^- \in \mathcal{P}^n_{ab}(\sigma)$. Let, moreover,

$$\ell \in \mathcal{P}^{n,+}_{ab}(\sigma), \ (\ell^+, \varphi) \in \mathcal{S}^n_{ab}(\sigma), \ (0, \varphi) \in \mathcal{S}^n_{ab}(\sigma).$$

Then $\ell \in \mathcal{S}^n_{ab}(\sigma)$.

Proof. Let u satisfy (1), (2). According to Remark 2 there exists a unique solution x to the problem

$$x'(t) = \mathcal{D}(\sigma(t)) \left[\mathcal{D}(\sigma(t))u'(t) \right]_{-} \text{ for a.e. } t \in [a, b], \quad \varphi(x) = 0$$

Moreover, we have $x(t) \ge 0$ for $t \in [a, b]$. Put w(t) = u(t) + x(t) for $t \in [a, b]$. Then $w(t) \ge u(t)$ for $t \in [a, b]$,

$$\mathcal{D}(\sigma(t))w'(t) = \left[\mathcal{D}(\sigma(t))u'(t)\right]_+ \ge 0 \text{ for a.e. } t \in [a,b], \quad \varphi(w) \ge 0.$$

Thus, $w(t) \ge 0$ for $t \in [a, b]$. Let $A_i = \{t \in [a, b] : w'_i(t) = u'_i(t)\}$ and put

$$q(t) \stackrel{def}{=} \mathcal{D}(\sigma(t)) \big[u'(t) - \ell(u)(t) \big] \text{ for a.e. } t \in [a, b].$$

Then, for every $i \in \{1, \ldots, n\}$, we have

$$\sigma_i(t)w_i'(t) = \begin{cases} \sigma_i(t)u_i'(t) = \sigma_i(t)\sum_{\substack{k=1\\n}}^n \left[\ell_{ik}^+(u_k)(t) - \ell_{ik}^-(u_k)(t)\right] + q_i(t) \\ \leq \sigma_i(t)\sum_{\substack{k=1\\k=1}}^n \left[\ell_{ik}^+(w_k)(t) - \ell_{ik}^-(u_k)(t)\right] + q_i(t) \text{ for } t \in A_i, \end{cases}$$

On the other hand,

$$\mathcal{D}(\sigma(t))\left[\ell^+(w)(t) - \ell^-(u)(t)\right] + q(t) \ge \mathcal{D}(\sigma(t))\ell(w)(t) + q(t) \ge 0 \text{ for a.e. } t \in [a, b].$$

Consequently,

$$\mathcal{D}(\sigma(t))\left[w'(t) - \ell^+(w)(t)\right] \le -\mathcal{D}(\sigma(t))\ell^-(u)(t) + q(t) \text{ for a.e. } t \in [a,b]$$

Put z(t) = u(t) - w(t) for $t \in [a, b]$. Then

$$\mathcal{D}(\sigma(t))[z'(t) - \ell^+(z)(t)] \ge 0 \text{ for a.e. } t \in [a, b], \quad \varphi(z) = 0,$$

and so $z(t) \ge 0$ for $t \in [a, b]$, i.e. $u(t) \ge w(t) \ge 0$ for $t \in [a, b]$.

As a consequences of the main results we formulate corollaries in the case when σ is a constant function. Therefore, in what follows we assume that $\sigma(t) = (\sigma_i)_{i=1}^n$ for $t \in [a, b]$ with $\sigma_i \in \{-1, 1\}$. First consider the system with deviating arguments

$$\sigma_i \Big[u_i'(t) - \sum_{k=1}^n \left(p_{ik}(t) u_k(\tau_{ik}(t)) - g_{ik}(t) u_k(\mu_{ik}(t)) \right) \Big] \ge 0 \text{ for a.e. } t \in [a, b],$$
(6)

$$u_i(a) \ge 0 \text{ if } \sigma_i = 1, \quad u_i(b) \ge 0 \text{ if } \sigma_i = -1,$$
 (7)

where $\sigma_i p_{ik}, \sigma_i g_{ik} \in L([a, b]; \mathbb{R}_+), \tau_{ik}, \mu_{ik} : [a, b] \to [a, b]$ are measurable functions.

Corollary 1. Let

$$\sigma_i(p_{ik}(t) - g_{ik}(t)) \ge 0, \quad \sigma_i \sigma_k g_{ik}(t) (\tau_{ik}(t) - \mu_{ik}(t)) \ge 0 \text{ for a.e. } t \in [a, b].$$

Let, moreover, there exist $A = (a_{ik})_{i,k=1}^n \in \mathbb{R}^{n \times n}_+$ such that r(A) < 1 and

$$\int_{a}^{b} \left(\sigma_i \left(p_{ik}(t) - g_{ik}(t) \right) + \sigma_i g_{ik}(t) \int_{\mu_{ik}(t)}^{\tau_{ik}(t)} \sum_{j=1}^{n} p_{kj}(s) \, ds \right) dt \le a_{ik}.$$

Then every $u \in AC([a, b]; \mathbb{R}^n)$ that satisfies (6), (7) is non-negative.

The next corollary deals with the second-order differential inequality with deviations together with mixed boundary value conditions

$$u''(t) \le -p(t)u(\tau(t)) + g(t)u(\mu(t)) \text{ for a.e. } t \in [a,b], \ u(a) \ge 0, \ u'(b) \ge 0.$$
(8)

Here $p, g \in L([a, b]; \mathbb{R}_+)$ and $\tau, \mu : [a, b] \to [a, b]$ are measurable functions.

Corollary 2. Let

 $\tau(t) \le t, \ p(t) \ge g(t), \ g(t)(\tau(t) - \mu(t)) \ge 0 \ for \ a.e. \ t \in [a, b].$

Let, moreover, there exists $\lambda_1, \lambda_2 \in \mathbb{R}_+$ such that

$$\int_{0}^{+\infty} \frac{ds}{\lambda_{1} + \lambda_{2}s + s^{2}} \ge b - a,$$

$$p(t) - g(t) + g(t)(\tau(t) - \mu(t)) \int_{\tau(t)}^{t} p(s) \, ds + g(t) \int_{\mu(t)}^{\tau(t)} (s - \mu(t))p(s) \, ds \le \lambda_{1} \text{ for a.e. } t \in [a, b],$$

$$g(t)(\tau(t) - \mu(t)) \le \lambda_{2} \text{ for a.e. } t \in [a, b],$$

and at least one of the last three inequalities is strict. Then every $u \in AC^1([a, b]; \mathbb{R})$ that satisfies (8) is non-negative and nondecreasing.