
50 International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia

Dulac–Cherkas Method for Detecting Exact Number of Limit Cycles
for Planar Autonomous Systems

A. A. Grin
Department of Mathematical Analysis, Differential Equations and Algebra,

Yanka Kupala State University of Grodno, Grodno, Belarus
E-mail: grin@grsu.by

A. V. Kuzmich
Department of Fundamental and Applied Mathematics,

Yanka Kupala State University of Grodno, Grodno, Belarus
E-mail: andrei-ivn@mail.ru

We consider the autonomous system of differential equations on the real plane
dx

dt
= P (x, y),

dy

dt
= Q(x, y), (x, y) ∈ Ω ⊂ R2, P (x, y), Q(x, y) ∈ C1(Ω). (1)

The Dulac criterion [1, p. 226], [8,9] is one of the ways to obtain nonlocal solution of the problem
of counting and localizing the limit cycles [7] of system (1). However, there is no regular methods
for finding a connected domain Ω of localization of the limit cycles and for constructing the Dulac
function in this domain. Therefore, this criterion was predominantly used for proving the absence of
limit cycles in a simply-connected domain Ω or the existence of at most one limit cycle in a doubly
connected domain Ω. L. A. Cherkas [2] suggested to develop the Dulac criterion and to construct a
special Dulac function in a connected domain Ω where the number and localization of limit cycles
can be determined by using transversal curves that correspond to such function. This criterion is
referred to as the Dulac–Cherkas criterion and allows one to derive an upper bound for the number
of limit cycles for many classes of systems (1) [3, 4]. Additional research is needed to produce an
exact estimate for the number of limit cycles but it is possible only in separate cases. Thus, our
aim here is to present approaches developed by us to obtaining an exact nonlocal estimate for the
number of limit cycles that surround one equilibrium point of system (1) and localizing these cycles.
The Dulac or Dulac–Cherkas methods are applied sequentially two times to find closed transversal
curves that divide the domain Ω in doubly connected subdomains surrounding the equilibrium
point such that the system (1) has exactly one limit cycle in each of them.

The Dulac–Cherkas method as a generalization of the Dulac criterion consists in finding the
Dulac–Cherkas function Ψ(x, y) [3, p. 199].
Definition 1. A function Ψ ∈ C1(Ω, R) is called as the Dulac–Cherkas function of system (1) in
a domain Ω if there exists such a real number k ̸= 0 that the following condition holds

Φ(x, y) = kΨdivX +
∂Ψ

∂x
P +

∂Ψ

∂y
Q > 0 (6 0), ∀ (x, y) ∈ Ω ⊂ R2, (2)

where X is a vector field defined by system (1).
Remark 1. In inequality (2), it is usually assumed [1, p. 226], [2,8,9], [3, p. 68] that the function
Φ can be zero on a set of the zero measure in the domain Ω, with no closed curve in this set being
a limit cycle of system (1). However, Cherkas et al. [3, p. 312] showed that this requirement can
be relaxed and replaced with the condition that the curve defined by the equation Φ(x, y) = 0 is
transversal.
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Remark 2. If Ψ is a Dulac–Cherkas function of system (1) in the domain Ω, then B = |Ψ|
1
k is

a Dulac function in each subdomain Ωi, where Ψ > 0(< 0), while any limit cycle Γ of system (1)
that exists in Ω is rough and stable (unstable) under the condition that kΦΨ < 0(> 0) on Γ.

To localize the limit cycles in the domain Ω, we introduce a set W = {(x, y) ∈ Ω : Ψ(x, y) = 0},
that is transversal for the vector field X under condition (2) and is not intersected by the limit
cycles of system (1).

The following assertion was proved in the monograph [3, p. 205].

Theorem 1 (the Dulac–Cherkas criterion). Suppose that in a connected domain Ω system (1) has
the unique anti-saddle point of rest O, while Ψ is the Dulac–Cherkas function of system (1) with
k < 0 in the domain Ω, where the set W consists of s mutually embedded ovals ωi surrounding the
point O. Then, system (1) has exactly one limit cycle in each of the s− 1 ring-shaped subdomains
Ωi that are bounded by neighboring ovals ωi and ωi+1 and can have at most s limit cycles in the
domain Ω in total.

The monograph [3] contains different ways for constructing the Dulac–Cherkas function which
allows to estimate the upper bound for the number of limit cycles by using Theorem 1.

In cases where this approach is difficult to be implemented, it was suggested in [3, p. 334] to
construct the Dulac function in the form of the product

B = |Ψ(x, y)|
1
k |Ψ̃(x, y)|

1

k̃ , k, k̃ ∈ R, kk̃ ̸= 0, Ψ, Ψ̃ ∈ C1(Ω). (3)

Theorem 2. A function B of the form (3) is the Dulac function of system (1) in the domain Ω if
the following condition is satisfied:

Φ̃ ≡ kk̃ΨΨ̃divX + kΨ
dΨ̃

dt
+ k̃Ψ̃

dΨ

dt
> 0 (< 0). (4)

Let W0 = W ∪ W̃ , where

W =
{
(x, y) ∈ Ω : Ψ(x, y) = 0

}
, W̃ =

{
(x, y) ∈ Ω : Ψ̃(x, y) = 0

}
,

then the following assertions hold in the domain Ω: the set W0 contains no equilibrium points of
system (1); any trajectory of system (1) that encounters the set W0 intersects it transversally; the
set W0 defines a curve with disjoint branches; and the limit cycles of system (1) that belong entirely
to the domain Ω do not intersect the set W0.

Since the curves of the set W0 divide the domain Ω in subdomains Ωi in each of which B is a
Dulac function in the classical sense, we find [3, p. 336] that the following assertion applies when
evaluating the number of cycles of system (1) and localizing these cycles.

Theorem 3. Suppose that in a connected domain Ω system (1) has the unique anti-saddle equi-
librium point O and possesses a function B of the form (3) that satisfies condition (4) for k < 0,
k̃ < 0. If sets W and W̃ in the domain Ω consist of, respectively, s and s̃ mutually embedded
ovals that surround O, then in each of the s+ s̃− 1 ring-shaped subdomains Ωi that are bounded by
neighboring ovals ωi and ωi+1 of the set W0, system (1) has exactly one limit cycle, which is stable
(unstable) for Φ̃/(kk̃ΨΨ̃) < 0 (> 0). System (1) can have at most s+ s̃ limit cycles in the domain
Ω in total.

However, none of the above theorems provides an exact estimate for the number of limit cycles
of the considered systems (1), since to establish the existence or absence of a limit cycle in the
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external doubly connected subdomain Ωs or Ωs+s̃, one needs to conduct additional research and
examine the influence of the other equilibrium points of rest or construct an additional transversal
closed curve that embraces an external oval that corresponds to the function B = |Ψ|

1
k or a function

B of the form (3).
Now we will present our approaches to establishing the exact number of limit cycles of system

(1) in the domain Ω, the approaches being based on constructing a closed transversal curve that
surrounds the external oval of the function B in a doubly connected subdomain Ωs with the use of
an additional application of the Dulac or Dulac–Cherkas criterion. The gist of the first approach
is expressed by the following assertion.

Theorem 4. Suppose that the assumptions of Theorem 1 are valid, and system (1) has a second
Dulac–Cherkas function Ψ̃(x, y) for k̃ < 0 in the domain Ω such that the set W̃ consists of s + 1
ovals in Ω that surround the point O. Then system (1) has exactly s limit cycles in the domain Ω.

Proof. By virtue of Theorem 1, the existence of a Dulac–Cherkas function Ψ(x, y) that defines s
ovals in the domain Ω implies the existence of s − 1 limit cycles of system (1) in the ring-shaped
domains Ωi, i = 1, . . . , s − 1, bounded by neighboring ovals ωi and ωi+1 and admits the existence
of one limit cycle in the doubly connected subdomain Ωs. By virtue of Theorem 1, the existence
of the second Dulac–Cherkas function Ψ̃(x, y), that defines s+1 ovals in the domain Ω implies the
existence of s limit cycles of system (1) in the ring-shaped domains Ω̃i, i = 1, . . . , s, bounded by
neighboring ovals of the set W̃ and admits the existence of one limit cycle in the doubly connected
subdomain Ω̃s+1, that lies in between the external oval of the set W̃ and the boundary ∂Ω of the
domain Ω. The simultaneous existence of the functions Ψ and Ψ̃ guarantees the existence of one
limit cycle in the subdomain Ωs \ Ω̃s+1 and rules out the existence of a limit cycle in the subdomain
Ω̃s+1. Hence it follows that system (1) has exactly s limit cycles in the domain Ω. It completes the
proof of the theorem.

A second approach can be described as follows.

Theorem 5. Suppose that the assumptions of Theorem 1 hold, and, in addition, that in the domain
Ω system (1) has a Dulac function B of the form (3) that satisfies the assumptions of Theorem 3,
with the set W̃ consisting of a single oval that is situated in the doubly connected domain Ωs and
surrounds all the ovals of the set W . Then system (1) has exactly s limit cycles in the domain Ω.

Proof. The existence of s−1 limit cycles of system (1) in the case where the Dulac–Cherkas function
Ψ(x, y) exists can be proved similarly to Theorem 4. The existence of one more limit cycle in the
doubly connected subdomain Ω̃s ⊂ Ωs in between the external oval of the set W and the single
oval of the set W̃ follows from Theorem 3. The simultaneous existence of the function Ψ and a
function B of the form (3) guarantees that system (1) has exactly s limit cycles in the domain Ω.
The proof of the theorem is complete.

If the usage of Theorem 5 does not enable the construction of a function Ψ̃, that satisfies
inequality (3), one can relinquish the sign-definiteness of the function Φ̃ and use the condition of
transversality of the set

V =
{
(x, y) ∈ Ω : Φ̃ = 0

}
with respect to the vector field X of system (1). This constitutes the essence of the third approach.

Theorem 6. Suppose that the assumptions of Theorem 1 are valid and there exists such a function
Ψ̃(x, y) ∈ C1(Ω) with k̃ < 0 that in the domain Ω the set W̃ intersects neither the set V nor the
set W . Then the set W̃ is transversal to the vector field X and is disjoint with the limit cycles of
system (1) that belong entirely to the domain Ω.
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Proof. We consider the set W̃ . Since W̃ and V are disjoint sets, it follows that the condition
Φ̃ > 0(< 0) is satisfied on the set W̃ . By virtue of inequality (4), the condition kΨdΨ̃

dt > 0 (< 0) is
satisfied on the curve Ψ̃ = 0 along any solution of system (1). Since the set W̃ does not intersect
the set W , it follows from the above inequality that the condition dΨ̃

dt > 0 (< 0) is satisfied.
Consequently, any trajectory of system (1) intersects the curve Ψ̃ = 0 transversally.

Without loss of generality, we consider the case dΨ̃
dt > 0. Let us show that the limit cycles

cannot intersect the curve Ψ̃ = 0. Suppose the contrary is true, then a point on the limit cycle can
get with time onto the curve Ψ̃ = 0 only from a set in which Ψ̃ < 0 and should necessarily leave into
a set in which Ψ̃ > 0. However, when moving along the limit cycle, the point should return into
the original position in the domain Ψ̃ = 0, which is impossible in view of the inequality? dΨ̃

dt > 0.
The obtained contradiction implies that the limit cycles of system (1) cannot intersect the curve
Ψ̃ = 0 and it completes the proof.

Remark 3. Theorems 4–6 persist if the function Ψ̃ is found not in the entire domain Ω but only in
the domain Ωs or in its doubly connected subdomain Gs ⊂ Ωs surrounding the equilibrium point O.

Theorem 7. Suppose that the assumptions of Theorem 1 are valid and system (1) has a closed
transversal curve that lies in a doubly connected subdomain Ωs that surrounds the external oval
of the set W , two of them forming the boundary of a ring-shaped domain Ω̃s ⊂ Ωs. Then, if the
trajectories of system (1) enter, as t increases, the interior of the domain Ω̃s from outside (or vice
versa) through the boundary ∂Ω̃s, then there exists the unique stable (or unstable) limit cycle of
system (1) in the subdomain Ω̃s and system (1) has exactly s limit cycles in the domain Ω in total.

Proof. According to Theorem 4, the existence of a Dulac–Cherkas function Ψ(x, y) ensures the
existence of s − 1 limit cycles of system (1) encircled by the external oval ωs of the set W . In
accordance with the Dulac criterion, system (1) can have no more than one limit cycle in the
doubly connected subdomain Ωs. On the other hand, if the trajectories of system (1) enter, as t
increases, the interior of the subdomain Ω̃s from outside (or vice versa) through the boundary ∂Ω̃s,
then, according to the Poincare theorem [3, p. 64], there exists at least one stable (or unstable)
limit cycle in the subdomain Ω̃s. Thus, we establish the uniqueness of the limit cycle in Ω̃s.
Consequently, system (1) has exactly s limit cycles in the domain Ω. The proof is complete.

A detailed presentation of the approaches developed by us and their application to some classes
of systems (1) are contained in our paper [5]. Our paper [6] also shows that these approaches
can be effectively implemented to establish the exact number of limit cycles surrounding several
equilibrium points of systems (1), the total Poincaré index of which is +1.
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