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Let N, Z and R the sets of natural, integer and real numbers, respectively, z = (zn) = (z(n))
(n ∈ N) – l-dimensional vector function (sequence), defined on N with values in Rl, i.e. z : N → Rl.
The set of such sequences is denoted by Sl. Following [1, p. 69] we introduce the definition.

Definition 1. A sequence z ∈ Sl is called periodic with a period ω ∈ N (ω-periodic) if for any
n ∈ N the equality zn+ω = zn holds.

Naturally, if the number ω is the period of the sequence z, then its multiples will also be the
periods of this sequence, i.e. for any n ∈ N, m ∈ N, we have z(n+mω) = z(n). Therefore, in the
future, under the period of the sequence, as a rule, we will understand the smallest of the periods.
In this case, in particular, any constant scalar sequence will be 1-periodic. The set of l-dimensional
ω-periodic sequences is denoted by PSl

ω.
Periodic sequences under certain conditions can be solutions of discrete (difference) systems.

The problem of the existence and construction of periodic solutions of discrete equations and
systems is considered in a sufficiently large number of papers [1,4,6] etc. In these papers solutions
are mainly studied, the period of which coincides with the period of the equation. The results
obtained in this direction are in many respects similar to the corresponding results for ordinary
differential equations. However, in some cases there are significant differences. Note one of them.

As it is known [8], a nonlinear scalar periodic ordinary differential equation does not have non-
constant periodic solutions such that the periods of the solution and equation are incommensurable.
Moreover, N. P. Erugin proved in [5] that such solutions are absent in the linear nonstationary
periodic system of two equations. It is interesting to investigate such questions for discrete equations
and systems. For this purpose, we consider the system

xn+1 = X(xn, yn, n), yn+1 = Y (xn, yn, n), n ∈ N, col(x, y) ∈ S2, (1)

the right side of which is ω-periodic, i.e. there exists the smallest ω ∈ N such that for any fixed
n0 ∈ N equalities X(xn0 , yn0 , n + ω) = X(xn0 , yn0 , n), Y (xn0 , yn0 , n + ω) = Y (xn0 , yn0 , n) hold for
all n ∈ N. Further, the period of the system of the form (1) is understood as the period of its right
side.

Analogous to [2], we introduce the following
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Definition 2. A periodic solution with a period of the system (1) such that the numbers ω and Ω
are coprime, we will call strongly irregular.

We note that the paper [7] shows the following: under certain conditions, the scalar discrete
equation can admit a strongly irregular periodic solution. Indeed, let σ be an arbitrary odd number
and (hn) ∈ PS1

σ. Take the discrete equation

xn+1 = −xn − (1− x2n)hn. (2)

The equation (2) has a solution
xn = (−1)n (3)

with period Ω = 2. As the numbers σ and Ω coprime, by Definition 2, the periodic solution (3) of
the equation (2) is strongly irregular.

Thus, Massera’s theorem [8] on the absence of strongly irregular periodic solutions for a scalar
ordinary equation for difference equations, generally speaking, has no complete analog for discrete
equations. An analogue of Massera’s theorem for linear difference equations was obtained in [3]. In
particular, it is shown that the scalar linear homogeneous periodic nonstationary discrete equation
of the first order has not strongly irregular periodic solutions different from the constants.

It is quite natural to raise the question for the two-dimensional case: is there an analogue of
the above theorem by N. P. Erugin on the two-dimensional linear system (1)

xn+1 = anxn + bnyn, yn+1 = cnxn + dnyn, n ∈ N, x ∈ S1, y ∈ S1, (4)

where the coefficient matrix
A =

[
a b
c d

]
is ω-periodic, i.e. A(n + ω) = A(n) for all n ∈ N and at least one of its elements is different from
the constant? As the following example shows, the answer to this question is generally negative.
Indeed, take a linear discrete system

xn+1 = −xn + bnyn, yn+1 = dnyn, n ∈ N, (bn) ∈ PS1
ω, (dn) ∈ PS1

ω, (5)

where at least one of the coefficients (bn), (dn) is different from the constant, i.e. ω ≥ 2, and the
greatest common divisor of numbers 2 and ω is 1. The system (5) has a periodic solution

xn = (−1)n, yn = 0, n ∈ N. (6)

The period of the solution (6) is coprime with the period of the system (5).
Our goal is to distinguish a class of linear two-dimensional discrete systems that have not

strongly irregular periodic solutions.
Further, we say that the columns H(1)(n), . . . , H(k)(n) of some matrix H(n), n ∈ N are linearly

independent if the identity

α1H
(1)(n) + · · ·+ αkH

(k)(n) ≡ 0, n ∈ N, α1, . . . , αk ∈ R

holds if and only if α1 = · · · = αk = 0. Through rankcolH denote the column rank of the matrix
H(n), n ∈ N, i.e. the largest number of its linearly independent columns.

Suppose that the system (4) has a strongly irregular Ω-periodic solution

xn = φn, yn = ψn, φ(n+Ω) = φ(n), ψ(n+Ω) = ψ(n), n ∈ N, (7)
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where ω and Ω are coprime and Ω ≥ 2. This means that

φn+1 ≡ anφn + bnψn, ψn+1 ≡ cnφn + dnψn, n ∈ N. (8)

As the identities (8) are true for all n ∈ N, there are also true

φn+1+Ω ≡ an+Ωφn+Ω + bn+Ωψn+Ω, ψn+1 ≡ cn+Ωφn+Ω + dn+Ωψn+Ω, n ∈ N. (9)

By virtue of the Ω-periodicity of functions φn, ψn, the identities (9) take the following form

φn+1 ≡ an+Ωφn + bn+Ωψn, ψn+1 ≡ cn+Ωφn + dn+Ωψn, n ∈ N. (10)

The identities (8), (10) implies the following

(an+Ω − an)φn + (bn+Ω − bn)ψ ≡ p(11)(n)φn + p(12)(n)ψn ≡ 0,

(cn+Ω − cn)φn + (dn+Ω − dn)ψ ≡ p(21)(n)φn + p(22)(n)ψn ≡ 0,
n ∈ N. (11)

We form a matrix
P (n) =

[
p(11)(n) p(12)(n)

p(21)(n) p(22)(n)

]
, n ∈ N.

We denote by P (j)(n), n ∈ N, j = 1, 2 the columns of this matrix. As P (n) = A(n+Ω)−A(n)
and A(n+ ω) ≡ A(n), n ∈ N, the matrix function P is ω-periodic.

We show that the columns P (1)(n) and P (2)(n) are linearly dependent, i.e. there are exist such
α0, β0 ∈ R, α2

0 + β20 ̸= 0, that α0P
(1)(n) + β0P

(2)(n) ≡ 0, n ∈ N. According to the assumption, at
least one of the functions x = φ, y = ψ is nonstationary. Therefore, there exists n0 ∈ N for which
the inequality φ2

n0
+ ψ2

n0
̸= 0 holds. The identities (11) imply the justice of equalities

φn0+mΩP
(1)(n0 +mΩ) + ψn0+mΩP

(2)(n0 +mΩ) = 0, m ∈ N,

from which, on the basis of the Ω-periodicity of functions φ, ψ, we obtain the equality

φn0P
(1)(n0 +mΩ) + ψn0P

(2)(n0 +mΩ) = 0, m ∈ N. (12)

As the matrix P has a period ω, the equality (12) can be written as

φn0P
(1)(n0 +mΩ+ kω) + ψn0P

(2)(n0 +mΩ+ kω) = 0, k,m ∈ N. (13)

Since k,m are an arbitrary natural numbers and least common multiple of ω and Ω is 1,
for any n ∈ N there exist such k,m that the equation n = n0 + mΩ + kω holds. Therefore,
P (j)(n0 +mΩ + kω) = P (j)(n), n ∈ N, j = 1, 2 for k,m ∈ N. Hence, from the equations (13) we
obtain

φn0P
(1)(n) + ψn0P

(2)(n) = 0, n ∈ N. (14)

By virtue of the fact that φ2
n0

+ψ2
n0

̸= 0, the identity (14) means that the columns of the matrix
P (n), n ∈ N are linearly dependent.

So, we have proved the following

Theorem. If the system (4) has a nonstationary periodic solution such that the solution period is
coprime with the system’s period, then the columns of the matrix are linearly dependent.

Corollary. If the matrix P (n), n ∈ N has a complete column rank, i.e. rankcolP = 2, the system
(4) has not nonstationary strongly irregular periodic solutions.
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Remark 1. As shown above, the discrete periodic system (5) has a strongly irregular 2-periodic
solution (6). The matrix P (n), n ∈ N for this system has the form

P (n) =

[
0 b(n+ 2)− b(n)
0 d(n+ 2)− d(n)

]
, n ∈ N. (15)

The columns of this matrix are linearly dependent and its column rank in generall case is one.

Remark 2. In general, the linear dependence of the columns and rows of a discrete matrix is
not equivalent. This is particularly confirmed by the example (15), where the matrix rows can be
linearly dependent only if

b(n+ 2)− b(n) ≡ l(d(n+ 2)− d(n)), l ∈ R.
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