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1 Introduction
Let M be a metric space. For a given positive integer n consider a family of linear differential
systems depending on the parameter µ ∈ M :

ẋ = A(t, µ)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1.1)

such that the matrix function A( · , µ) : R+ → Rn×n is continuous and bounded for each fixed µ ∈ M
(generally speaking, the bound being dependent on µ). Therefore, fixing a value of the parameter
µ ∈ M in the family (1.1), we obtain a linear differential system with continuous coefficients
bounded on the semiaxis. The Lyapunov exponents of this system are denoted by λ1(µ;A) 6
· · · 6 λn(µ;A). Thus for each k = 1, n we get the function λk( · ;A) : M → R, which is called the
k-th Lyapunov exponent of the family (1.1), and the vector function Λ( · ;A) : M → Rn defined by
Λ(µ;A) = (λ1(µ;A), . . . , λn(µ;A))⊤.

In the theory of Lyapunov exponents, a family of matrix functions A( · , µ), µ ∈ M (as stated,
all functions are continuous and bounded on the semiaxis), is considered under one of the following
two natural assumptions: that the family is continuous either a) in the compact-open topology, or
b) in the uniform topology. The condition a) is equivalent to the fact that if a sequence (µk)k∈N
of points from M converges to a point µ0, then the sequence of functions A(t, µk) of the variable
t > 0 converges to the function A(t, µ0) as k → +∞ uniformly on each segment [0, T ] ⊂ R+,
while the condition b) is equivalent to the fact that this convergence is uniform over the whole
semiaxis R+. Denote the class of families (1.1) that are continuous in the compact-open topology
by Cn(M) and the class of those that are continuous in the uniform topology by Un(M). It is clear
that Un(M) ⊂ Cn(M). In what follows, we shall identify families (1.1) with the matrix-functions
A( · , · ) defining them, and therefore write A ∈ Cn(M) or A ∈ Un(M).

For families (1.1) V. M. Millionshchikov stated [9] the problem of description of their Lyapunov
exponents as functions of a parameter. In other words, this problem is formulated as follows: for
each n ∈ N, k = 1, n, and metric space M describe the following classes of functions:

Λk(M ;n, C) =
{
λk( · ;A) : A ∈ Cn(M)

}
and Λk(M ;n,U) =

{
λk( · ;A) : A ∈ Un(M)

}
. (1.2)

V. M. Millionshchikov proved that for any metric space M and family A ∈ Cn(M) each of the
Lyapunov exponents λk( · ;A) can be represented as the limit of a decreasing sequence of functions
of the first Baire class. In particular, this implies that λk( · ;A) is a function of the second Baire
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class on this space (this assertion followed from the essentially more general Millionshchikov the-
orem obtained by him in [8]). M. I. Rakhimberdiev proved [10] that the number of Baire class
in the description above cannot be reduced even in the case of Lyapunov exponents of families
from Un(M). However, the problem of a complete description of the classes (1.2) until recently
remained unsolved, the solution have been obtained in [6] and [4].

The description of the classes (1.2) is a special case of a more general problem – to describe for
each n ∈ N and metric space M the following classes of vector functions:

Λ(M ;n, C) =
{
Λ( · ;A) : A ∈ Cn(M)

}
and Λ(M ;n,U) =

{
Λ( · ;A) : A ∈ Un(M)

}
. (1.3)

For further discourse note that in the case n = 1, the description of the second of the classes (1.3)
(i.e., of the class Λ(M ; 1,U) = Λ1(M ; 1,U)) is obvious: it consists of all continuous functions
M → R.

Before presenting the main results on the description of the classes (1.2) and (1.3), recall the
necessary definitions of the descriptive set theory [5, p. 267]. Let M and N be sets consisting of
subsets of the space M . A function f : M → R belongs to the class (M, ∗) if for any r ∈ R the
preimage f−1((r,+∞)) of the interval (r,+∞) belongs to M. A function f : M → R belongs to the
class ( ∗,N) if for any r ∈ R the preimage f−1([r,+∞)) of the half-interval [r,+∞) belongs to N.
Finally, a function f belongs to the class (M,N) if it belongs to both classes (M, ∗) and ( ∗,N).

For any n ∈ N, k = 1, n, and metric space M , the classes Λk(M ;n, C) are described in [6] – a
function f : M → R belongs to the class Λk(M ;n, C) if and only if it: 1) belongs to the class ( ∗, Gδ)
and 2) has an upper semi-continuous minorant. For any n > 2, k = 1, n, and metric space M ,
the description of the classes Λk(M ;n,U) is obtained in [4]: a function f : M → R belongs to the
class Λk(M ;n,U) if and only if it satisfies the condition 1) and the condition 2′) it has continuous
minorant and majorant. As can be seen from the formulations above, the descriptions of the classes
Λk(M ;n, C) and Λk(M ;n,U) are similar, however, their proofs differ quite significantly. For any
n ∈ N, k = 1, n, and metric space M , the class Λ(M ;n, C) is described in [6], and the description of
the class Λ(M ;n,U) was announced in [1] (the full proof is given in [2]). Moreover, the description
of both classes (1.3) is obtained by adding to the conditions 1) and 2) (respectively, to 1) and 2′)),
which are necessary since Un(M) ⊂ Cn(M), the inequalities f1(µ) 6 · · · 6 fn(µ) for all µ ∈ M .
The latter inequalities obviously follow from the definition of the vector function Λ( · ;A).

Let us emphasize that the description of the class Λ(M ;n,U) required for its proof an approach
different from those used in [4, 6]. As noted above, the key part in the description of the class
Λ(M ;n,U) is a (constructive) proof of the sufficiency of the conditions. Let us formulate this
description [1, 2], since the results given below are closely related to it.

Theorem. Let M be a metric space, an integer n > 2, and all components of a vector function
(f1, . . . , fn)

⊤ : M → Rn belong to the class ( ∗, Gδ), have continuous minorant and majorant and
satisfy the inequalities f1(µ) 6 · · · 6 fn(µ) for all µ ∈ M . Then there exists a family A ∈ Un(M)
such that Λ( · ;A) = (f1, . . . , fn)

⊤.

If the given vector function is bounded:

sup
{∥∥(f1(µ), . . . , fn(µ))⊤∥∥ : µ ∈ M

}
< +∞,

then the statement of the above theorem can be significantly strengthened. Denote by Qn(M) the
class of families (1.1) of the form A(t, µ) = B(t)+Q(t, µ), t ∈ R+, µ ∈ M , where B(t) is a bounded
n× n matrix, and Q(t, µ) is a bounded n× n matrix vanishing as t → +∞ uniformly with respect
to µ.

The proof of the preceding theorem implies the following
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Corollary 1. For any metric space M , integer n > 2, and vector function (f1, . . . , fn)
⊤ : M → Rn

whose components belong to the class (∗, Gδ), are bounded and satisfy the inequalities f1(µ) 6 · · · 6
fn(µ) for all µ ∈ M , there exists a family A ∈ Qn(M) such that Λ( · ;A) = (f1, . . . , fn)

⊤.

Let us give some more corollaries of the theorem presented here, which answer a number of
open questions.

V. M. Millionshchikov proved [8] that if M is a complete metric space, then for a family
A ∈ Cn(M) the set USi(A) of upper semicontinuity points of the function λi( · ;A) contains a dense
Gδ-set for each i = 1, n. In other words, the upper semicontinuity of these functions is Baire typical
in the space M . This statement is not true for the lower semicontinuity: in [11] for each n > 1 there
is constructed a family A ∈ Cn([0, 1]) such that the set LSi(A) of lower semicontinuity points of the
function λi( · ;A), i = 1, n, is empty. A complete description of the n-tuples (LS1(A), . . . , LSn(A))
for any metric space M and a complete description of the n-tuples (US1(A), . . . , USn(A)) for any
complete metric space M are obtained in [7] for the families A ∈ Cn(M). A family A ∈ Un([0, 1])
for which the set LSi(A) is empty is constructed in [13] for any n > 2 and i = 1, n. Later, using
the ideas of that paper and the results of [7], a complete description of the sets LSi(A), i = 1, n,
for any metric space M and a complete description of the sets USi(A), i = 1, n, for any complete
metric space M were obtained in [3] for the families A ∈ Un(M).

Using the main theorem we can give a complete description of the n-tuples (LS1(A), . . . , LSn(A))
for any metric space M and a complete description of the n-tuples (US1(A), . . . , USn(A)) for any
complete metric space M for the families A ∈ Un(M) thus giving an answer to the problem stated
in [3].

Corollary 2. For any integer n > 2 and metric space M , an n-tuple (M1, . . . ,Mn) of subsets
of M is the n-tuple of the lower semicontinuity sets of the Lyapunov exponents of some family
A ∈ Un(M) (i.e., Mi = LSi(A), i = 1, n) if and only if each set Mi, i = 1, n, is Fσδ and contains
all isolated points of M . Moreover, in cases where such a family exists, it can be chosen from the
class Qn(M).

Corollary 3. For any integer n > 2 and complete metric space M , an n-tuple (M1, . . . ,Mn) of
subsets of M is the n-tuple of the upper semicontinuity sets of the Lyapunov exponents of some
family A ∈ Un(M) (i.e., Mi = USi(A), i = 1, n) if and only if each set Mi, i = 1, n, is a dense
Gδ-set in M . Moreover, in cases where such a family exists, it can be chosen from the class Qn(M).

For each µ ∈ M denote by S(µ;A) the vector space of solutions of the system (1.1). As is well
known, the sets Lα(µ;A)

def
= {x ∈ S(µ;A) : λ[x] < α} and Nα(µ;A)

def
= {x ∈ S(µ;A) : λ[x] ≤ α}

are vector subspaces of the space S(µ;A) for any α ∈ R. Denote their dimensions by dα(µ;A) and
Dα(µ;A) respectively. Next we consider the natural question: what are the functions µ 7→ dα(µ;A)
and µ 7→ Dα(µ;A)? A. N. Vetokhin proved [12] that if M is the space of all linear n-dimensional
systems endowed with either of the topologies: compact-open or uniform, and the family (1.1) is
defined by the equality A(t, µ) = µ(t), µ ∈ M , t ∈ R+, then the first function belongs exactly to
the second Baire class, and the second one belongs exactly to the third Baire class.

The following statements contain a complete description of the classes {dα(µ;A) : A ∈ Cn(M)},
{dα(µ;A) : A ∈ Un(M)}, {Dα(µ;A) : A ∈ Cn(M)}, and {Dα(µ;A) : A ∈ Un(M)} for any metric
space M and numbers α ∈ R, n ∈ N.

Corollary 4. Let an arbitrary metric space M and numbers α ∈ R, n ∈ N, and a function
f : M → {0, . . . , n} be given. Then the equality f = dα( · ;A) (f = Dα( · ;A)) holds for some family
A ∈ Cn(M) if and only if f belongs to the class (Fσ, Fσ) (respectively, to the class (Fσδ, Fσδ)).
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Corollary 5. Let an arbitrary metric space M and numbers α ∈ R, n ∈ N, and a function
f : M → {0, . . . , n} be given. Then the equality f = dα( · ;A) (f = Dα( · ;A)) holds for some family
A ∈ Un(M) if and only if

1) in the case n > 2, the function f belongs to the class (Fσ, Fσ) (respectively, (Fσδ, Fσδ));

2) in the case n = 1, the function f is lower semicontinuous (respectively, upper semicontinuous).

Moreover, for n > 2, if such a family exists, then it can be chosen from the class Qn(M).

Corollaries 4 and 5 allow us to describe the sets of semicontinuity of functions dα( · ;A) and
Dα( · ;A) for families A ∈ Cn(M) and A ∈ Un(M).

Corollary 6. Let an arbitrary metric space M and numbers α ∈ R, and n > 2 (n > 1) be given.
Then a set S ⊂ M is the set of lower semicontinuity points of the function dα( · ;A) for some family
A ∈ Un(M) (A ∈ Cn(M)) if and only if S is a dense Gδ-subset. A set S ⊂ M is the set of upper
semicontinuity points of the function dα( · ;A) for some family A ∈ Un(M) (A ∈ Cn(M)) if and
only if S is a dense Fσ-subset. Moreover, for n > 2, if the mentioned family exists, then it can be
chosen from the class Qn(M).

Corollary 7. Let an arbitrary metric space M and numbers α ∈ R, and n > 2 (n > 1) be given.
Then a set S ⊂ M is the set of lower semicontinuity points of the function Dα( · ;A) for some
family A ∈ Un(M) (A ∈ Cn(M)) if and only if S is a dense Fσδ-subset. A set S ⊂ M is the set of
upper semicontinuity points of the function Dα( · ;A) for some family A ∈ Un(M) (A ∈ Cn(M)) if
and only if S is a dense Gδσ-subset. Moreover, for n > 2, if the mentioned family exists, it can be
chosen from the class Qn(M).
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