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1 Introduction

For the equation
y™ = polyl*sgny, n>2, k>1, py>0, (1.1)

we study blow-up solutions, i.e. those with lim Oy(x) = 0.
T—T*—

The origin of the considered problem is described in [8, problem 16.4], and [6]. It was earlier
proved for sufficiently large n (see [9]), for n = 12 (see [7]), for n = 13,14 (see [4]), and for n = 15
(see [11]), that there exists k = k(n) > 1 such that equation (1.1) has a solution with nonpower-law
behavior, namely,

y(x) = (" —z)"“h(log(z* — x)), x — 2" —0, (1.2)
where h is a positive periodic non-constant function on R. Now we prove this result for arbitrary
n > 12.

Note that it was also proved for n = 2 (see [8]) and for n = 3,4 [1], that all blow-up solutions
have power-law asymptotic behavior:

y(x) =C(z" —2)"*(1+0(1)), = — 2" -0, (1.3)
with

n C:(a(a+1)~-(a+n—1))k11.

o=—-" P (1.4)

k-1’
Existence of a solution satisfying (1.3) was proved for arbitrary n > 2. For 2 <n <11 an (n — 1)-
parametric family of such solutions to equation (1.1) was proved to exist (see [1,2], [3, Ch. I(5.1)]).
It was proved that for slightly superlinear equations of arbitrary order n > 5 all blow-up solutions
have power-law asymptotic behavior (see [5]).

2 The main result

In this section, a result on existence of solutions with non-power behavior is formulated for equation

(1.1) with n > 12.

Theorem 2.1. For n > 12 there exists k > 1 such that equation (1.1) has a solution y(x) with
yD(z) = (2" — )" Ihj(log(z* — ), j=0,1,...,n—1,

where o is defined by (1.4) and h; are periodic positive non-constant functions on R.



12 International Workshop QUALITDE — 2018, December 1 — 3, 2018, Tbilisi, Georgia

3 Proof of the main result

To prove the main result we transform equation (1.1) into the dynamical system and use a version
of the Hopf Bifurcation theorem (see [10]).
3.1 Transformation of equation (1.1)

Equation (1.1) can be transformed into a dynamical system (see [1] or [3, Ch. I(5.1)]), by using the
substitution
F—x=e¢t y=(C+v)e™, (3.1)

where C' and « are defined by (1.4). The derivatives y, j=0,1,...,n— 1, become
et Lo, o),

where v = % , and L; is a linear function with

L;(0,0,...,0) =Cao(a+1)---(a+j—1)#0

and the coefficient of v() is equal to 1.
Thus (1.1) is transformed into

ettt (v, 0!, 0™ = po(C + v)Fe, (3.2)
n—1
ol = po(C +0)F —poC* =3 " ajl, (33)
=0
where aj, j = 1,...,n, are the coefficients of v in the linear function L,, and are (n — j)-degree

polynomial functions in «. Equation (3.3) can be written as

n—1
o™ = EC* 1 pgu — Zajv(j) + f(v), (3.4)
=0

where

f(v) =po((C +v)F — C% — kC* 1) = O(v?),
f'(v) =0() as v — 0,

Suppose V' = (V,...,V,—1) is the vector with coordinates V; = w9, j =0,...,n —1. Then

equation (3.4) can be written as
av

= AV E(V), (3.5)
where A is a constant n X n matrix, namely,
0 1 0 0 0
0 0 1 0 0
e 0 0 0 1 0
0 ..... 0 00 ........... 1
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with
Go = ag — kc"lpg=ag —ka(a+1)---(a+n—-1)=ay— (a+1)---(a+n—1)(a+n) (3.6)

and eigenvalues satisfying the equation

0=det(A —\E) = (—=1)""(=ag — a1\ — - - — a1 AL = AP
= (_1)n+1((a+1)(a+2)...(a+n)—()\4—04)...()\_’_&_’_”_1))7 (3.7)

which is equivalent to
n—1 n—1

[[O+a+5)=]]0+a+). (3.8)

j=0 7=0

F in (3.5) is the vector function F(V) = (0,...,0,F,—1(V)) and F,,_1(V) = f(W).

3.2 Preliminary results

Theorem 3.1 (Modification of the Hopf Theorem [10]). Consider an a-parameterized dynamical
system @ = f(z,a) where f : R"™ s R™ 4s a C"-function (r > 3) such that f(0,a) = 0 for all
a € R. Suppose the Jacobian matriz D, f(0,a) = A(a) has £if as simple eigenvalues for some
a € R. Let v and w be eigenvectors such that Av = Piv, A*w = Biw, where A* denotes the
transpose conjugate matrixz of the matrix A. Put

2 .
, : I (fr -
¢ =Re(e"v), ¢ =Re(c"w), ©;= ]1|/ < ]a(afg) 0, @), 1/1) dt.
0

If ©. # 0 for some odd number c, then (0,a) is a bifurcation point of periodic solutions of
& = f(x,a). More precisely, there exist continuous mappings € — a(e) € R, e = T(e) € R, and
e — b(e) € R"™ defined in a neighborhood of 0 and such that «(0) = &, T(0) = 27”, b(0) = 0,
b(e) # 0 for e # 0, and the solutions to the problems & = f(x,a(e)), x(0) = b(e) are T'(e)-periodic
and non-constant.

To apply the Hopf Bifurcation theorem, we study equation (3.5) and the roots of the algebraic
equation (3.8).

Lemma 3.1 ([4]). For any integer n > 12 there exist o > 0 and ¢ > 0 such that

n—1 n—1
[[@i+e+i)=]][0+a+) (3.9)
j=0 J=0

with i2 = —1.

Lemma 3.2 ([4]). For any o > 0 and any integer n > 1 all roots A € C to equation (3.8) are
stmple.

3.3 Proof of Theorem 2.1

We can obtain some useful formulas

a=cola+l)...(a+n—-1)—(a+1)---(a+n)=-nla+1)...(a+n—-1), (3.10)
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d"—l(—zio) _ dn_l(—al)

e, S nl, (3.11)
dn72<_’do) n(n — 1) (204 + 1)TL'
= n((n Dla+ (n - 2)! 2 ) — (3.12)
d" Y (—az) d"%(—az) n(n —1) n!
—_ T = _ = — — '7 = ——. -1
dan—1 0, dom—2 (n=2) 2 2 (3.13)

By using (3.7), we can prove for n, a, ¢ from Lemma 3.1 that the vector
U= (17 qZ) _q27 _q3i7 q4) e )

is an eigenvector of the matrix A corresponding to the eigenvalue gi. Consider also an eigenvector
w of the matrix A* corresponding to the eigenvalue gi, assuming its last coordinate to equal 1:
w=_(..... ,1). Then

© = Re(e''v) = (cos t,—qsint, —q° cost, ¢ sint, ¢* cost, . . .), ¥ = Re(ew) = (...... ,cost).

Using formulas (3.11)—(3.13), we obtain

0 0 0 0 cost
1 7 : : . . —qsint .
On-1 = / o : o dt
n (n—1)! / 0 0 0 ... 0 : :
cost
27
1
- (n—1)! /n! (COSZt +gsintcost)dt = mn # 0,
0
" ! 0 0 ... 0 cost
2w . . . . . ) ‘
1 : : : Do —qgsint .
On_2 = (n—2)‘/ 0 0 0 0o ... 0 —q2 cost | » dt
o | | Garom a2ay | -
2 don—2 2 0 .0 ' cost
T (2a 4+ 1)n! | ¢*n! an(n —1) )
- = 2a+1 0.
(n—2)!< 2 2 ) 5 (2a+1+4)>

So, if n > 12, then ©,,_1 > 0, ©,,_2 > 0 (since a > 0), and either n—1 or n—2 is odd. Consequently,
due to the above lemmas, all the conditions of Theorem 3.1 are fulfilled. Therefore, for any n > 12
there exists a family a. > 0 such that equation (3.8) with oo = a9 has the imaginary roots A = +qi
with ¢ from Lemma 3.1 and, for sufficiently small €, system (3.5) with & = «. has an arbitrary small
non-zero periodic solution V;(¢). In particular, the coordinate V;(t) = v(t) of the vector V.(t) is
also a small periodic function with the same period. This function is non-zero, too. Otherwise, all
v\ and therefore V.(t) itself should be zero. Then, taking into account (3.1), we obtain

y(z) = (C +v(—In(z* — 2)))(z* — 2)~*.

Put h(s) = C + v(—s), which is a non-constant continuous periodic and positive for sufficiently
small € function, and obtain the required equality

y(z) = (" — )" *h(In(z* — x)).

In the similar way we obtain the related expressions for y) (x),7=0,1,...,n—1.
Theorem 2.1 is proved.
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