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1 Introduction
For the equation

y(n) = p0|y|k sgn y, n ≥ 2, k > 1, p0 > 0, (1.1)
we study blow-up solutions, i.e. those with lim

x→x∗−0
y(x) = ∞.

The origin of the considered problem is described in [8, problem 16.4], and [6]. It was earlier
proved for sufficiently large n (see [9]), for n = 12 (see [7]), for n = 13, 14 (see [4]), and for n = 15
(see [11]), that there exists k = k(n) > 1 such that equation (1.1) has a solution with nonpower-law
behavior, namely,

y(x) = (x∗ − x)−αh(log(x∗ − x)), x→ x∗ − 0, (1.2)
where h is a positive periodic non-constant function on R. Now we prove this result for arbitrary
n ≥ 12.

Note that it was also proved for n = 2 (see [8]) and for n = 3, 4 [1], that all blow-up solutions
have power-law asymptotic behavior:

y(x) = C(x∗ − x)−α(1 + o(1)), x→ x∗ − 0, (1.3)
with

α =
n

k − 1
, C =

(α(α+ 1) · · · (α+ n− 1)

p0

) 1
k−1

. (1.4)

Existence of a solution satisfying (1.3) was proved for arbitrary n ≥ 2. For 2 ≤ n ≤ 11 an (n− 1)-
parametric family of such solutions to equation (1.1) was proved to exist (see [1,2], [3, Ch. I(5.1)]).
It was proved that for slightly superlinear equations of arbitrary order n ≥ 5 all blow-up solutions
have power-law asymptotic behavior (see [5]).

2 The main result
In this section, a result on existence of solutions with non-power behavior is formulated for equation
(1.1) with n ≥ 12.
Theorem 2.1. For n ≥ 12 there exists k > 1 such that equation (1.1) has a solution y(x) with

y(j)(x) = (x∗ − x)−α−jhj(log(x
∗ − x)), j = 0, 1, . . . , n− 1,

where α is defined by (1.4) and hj are periodic positive non-constant functions on R.
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3 Proof of the main result
To prove the main result we transform equation (1.1) into the dynamical system and use a version
of the Hopf Bifurcation theorem (see [10]).

3.1 Transformation of equation (1.1)

Equation (1.1) can be transformed into a dynamical system (see [1] or [3, Ch. I(5.1)]), by using the
substitution

x∗ − x = e−t, y = (C + v) eαt, (3.1)

where C and α are defined by (1.4). The derivatives y(j), j = 0, 1, . . . , n− 1, become

e(α+j)t · Lj(v, v
′, . . . , v(j)),

where v(j) = djv
dtj

, and Lj is a linear function with

Lj(0, 0, . . . , 0) = Cα(α+ 1) · · · (α+ j − 1) ̸= 0

and the coefficient of v(j) is equal to 1.
Thus (1.1) is transformed into

e(α+n)t · Ln(v, v
′, . . . , v(n)) = p0(C + v)keαkt, (3.2)

v(n) = p0(C + v)k − p0C
k −

n−1∑
j=0

ajv
(j), (3.3)

where aj , j = 1, . . . , n, are the coefficients of v(j) in the linear function Ln, and are (n− j)-degree
polynomial functions in α. Equation (3.3) can be written as

v(n) = kCk−1p0v −
n−1∑
j=0

ajv
(j) + f(v), (3.4)

where

f(v) = p0
(
(C + v)k − Ck − kCk−1v

)
= O(v2),

f ′(v) = O(v) as v → 0,

Suppose V = (V0, . . . , Vn−1) is the vector with coordinates Vj = v(j), j = 0, . . . , n − 1. Then
equation (3.4) can be written as

dV

dt
= AV + F (V ), (3.5)

where A is a constant n× n matrix, namely,

A =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1

−ã0 −a1 −a2 −a3 . . . −an−1


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with

ã0 = a0 − kck−1p0 = a0 − kα(α+ 1) · · · (α+ n− 1) = a0 − (α+ 1) · · · (α+ n− 1)(α+ n) (3.6)

and eigenvalues satisfying the equation

0 = det(A− λE) = (−1)n+1(−ã0 − a1λ− · · · − an−1λ
n−1 − λn)

= (−1)n+1
(
(α+ 1)(α+ 2) · · · (α+ n)− (λ+ α) · · · (λ+ α+ n− 1)

)
, (3.7)

which is equivalent to
n−1∏
j=0

(λ+ α+ j) =

n−1∏
j=0

(1 + α+ j). (3.8)

F in (3.5) is the vector function F (V ) = (0, . . . , 0, Fn−1(V )) and Fn−1(V ) = f(V0).

3.2 Preliminary results
Theorem 3.1 (Modification of the Hopf Theorem [10]). Consider an α-parameterized dynamical
system ẋ = f(x, α) where f : Rn+1 7→ Rn is a Cr-function (r ≥ 3) such that f(0, α) = 0 for all
α ∈ R. Suppose the Jacobian matrix Dxf(0, α̃) ≡ A(α̃) has ±iβ as simple eigenvalues for some
α̃ ∈ R. Let v and w be eigenvectors such that Av = βiv, A∗w = βiw, where A∗ denotes the
transpose conjugate matrix of the matrix A. Put

φ ≡ Re(eitv), ψ ≡ Re(eitw), Θj =
1

j!

2π∫
0

(∂j(fx)
∂αj

(0, α̃)φ,ψ
)
dt.

If Θc ̸= 0 for some odd number c, then (0, α̃) is a bifurcation point of periodic solutions of
ẋ = f(x, α). More precisely, there exist continuous mappings ε 7→ α(ε) ∈ R, ε 7→ T (ε) ∈ R, and
ε 7→ b(ε) ∈ Rn defined in a neighborhood of 0 and such that α(0) = α̃, T (0) = 2π

q , b(0) = 0,
b(ε) ̸= 0 for ε ̸= 0, and the solutions to the problems ẋ = f(x, α(ε)), x(0) = b(ε) are T (ε)-periodic
and non-constant.

To apply the Hopf Bifurcation theorem, we study equation (3.5) and the roots of the algebraic
equation (3.8).

Lemma 3.1 ([4]). For any integer n ≥ 12 there exist α > 0 and q > 0 such that

n−1∏
j=0

(qi+ α+ j) =

n−1∏
j=0

(1 + α+ j) (3.9)

with i2 = −1.

Lemma 3.2 ([4]). For any α > 0 and any integer n > 1 all roots λ ∈ C to equation (3.8) are
simple.

3.3 Proof of Theorem 2.1
We can obtain some useful formulas

ã0 = α(α+ 1) . . . (α+ n− 1)− (α+ 1) · · · (α+ n) = −n(α+ 1) . . . (α+ n− 1), (3.10)
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dn−1(−ã0)
dαn−1

= n!,
dn−1(−a1)
dαn−1

= −n!, (3.11)

dn−2(−ã0)
dαn−2

= n
(
(n− 1)!α+ (n− 2)!

n(n− 1)

2

)
=

(2α+ 1)n!

2
, (3.12)

dn−1(−a2)
dαn−1

= 0,
dn−2(−a2)
dαn−2

= −(n− 2)!
n(n− 1)

2
= −n!

2
. (3.13)

By using (3.7), we can prove for n, α, q from Lemma 3.1 that the vector

v = (1, qi,−q2,−q3i, q4, . . . )

is an eigenvector of the matrix A corresponding to the eigenvalue qi. Consider also an eigenvector
w of the matrix A∗ corresponding to the eigenvalue qi, assuming its last coordinate to equal 1:
w = (. . . . . . , 1). Then

φ = Re(eitv) =
(
cos t,−q sin t,−q2 cos t, q3 sin t, q4 cos t, . . .

)
, ψ = Re(eitw) = (. . . . . . , cos t).

Using formulas (3.11)–(3.13), we obtain

Θn−1 =
1

(n− 1)!

2π∫
0




0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
n! −n! 0 . . . 0




cos t
−q sin t

...

...

 ,


...
...
...

cos t



 dt

=
1

(n− 1)!

2π∫
0

n! (cos2 t+ q sin t cos t) dt = πn ̸= 0,

Θn−2 =
1

(n− 2)!

2π∫
0




0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0

(2α+ 1)n!

2

dn−2(−a1)
dαn−2

−n!
2

0 . . . 0




cos t
−q sin t
−q2 cos t

...

 ,


...
...
...

cos t



 dt

=
π

(n− 2)!

((2α+ 1)n!

2
+
q2n!

2

)
=
πn(n− 1)

2
(2α+ 1 + q2) > 0.

So, if n ≥ 12, then Θn−1 > 0, Θn−2 > 0 (since α > 0), and either n−1 or n−2 is odd. Consequently,
due to the above lemmas, all the conditions of Theorem 3.1 are fulfilled. Therefore, for any n ≥ 12
there exists a family αε > 0 such that equation (3.8) with α = α0 has the imaginary roots λ = ±qi
with q from Lemma 3.1 and, for sufficiently small ε, system (3.5) with α = αε has an arbitrary small
non-zero periodic solution Vε(t). In particular, the coordinate Vε,0(t) = v(t) of the vector Vε(t) is
also a small periodic function with the same period. This function is non-zero, too. Otherwise, all
v(j) and therefore Vε(t) itself should be zero. Then, taking into account (3.1), we obtain

y(x) =
(
C + v(− ln(x∗ − x))

)
(x∗ − x)−α.

Put h(s) = C + v(−s), which is a non-constant continuous periodic and positive for sufficiently
small ε function, and obtain the required equality

y(x) = (x∗ − x)−αh(ln(x∗ − x)).

In the similar way we obtain the related expressions for y(j)(x), j = 0, 1, . . . , n− 1.
Theorem 2.1 is proved.
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