On the Well-Posedness Question of the Modified Cauchy Problem for Linear Systems of Impulsive Equations with Singularities

Malkhaz Ashordia

A. Razmadze Mathematical Institute of I. Javakhishvili Tbiisi State University, Tbilisi, Georgia; Sokhumi State University, Tbilisi, Georgia E-mail: ashord@rmi.ge

Nato Kharshiladze

Sokhumi State University, Tbilisi, Georgia E-mail: natokharshiladze@ymail.com

Let $I \subset \mathbb{R}$ be an interval non-degenerate in the point, $b_0 = \sup I$ and

$$I_0 = I \setminus \{b_0\}.$$

Consider the linear system of impulsive equations with fixed points of impulses actions

$$\frac{dx}{dt} = P(t)x + q(t) \text{ for a.a. } t \in I_0 \setminus \{\tau_l\}_{l=1}^{+\infty},$$

$$\tag{1}$$

$$x(\tau_l +) - x(\tau_l -) = G_l x(\tau_l) + g_l \ (l = 1, 2, ...),$$
(2)

where $P \in L_{loc}(I_0, \mathbb{R}^{n \times n}), q \in L_{loc}(I_0, \mathbb{R}^n), G_l \in \mathbb{R}^{n \times n} \ (l = 1, 2, ...), g_l \in \mathbb{R}^n \ (l = 1, 2, ...), \tau_l \in I_0$ $(l = 1, 2, ...), \tau_i \neq \tau_j \text{ if } i \neq j, \text{ and } \lim_{l \to +\infty} \tau_l = b_0.$ Let $H = \text{diag}(h_1, ..., h_n) : I_0 \to \mathbb{R}^{n \times n}$ be a diagonal matrix-functions with continuous diagonal

elements $h_k: I_0 \to [0, +\infty[(k = 1, ..., n)].$

We consider the problem of the well-posedness of solution $x: I_0 \to \mathbb{R}^n$ of the system (1), (2), satisfying the modified Cauchy condition

$$\lim_{t \to b_0} (H^{-1}(t)x(t)) = 0.$$
(3)

Along with the system (1), (2) consider the perturbed singular system

$$\frac{dx}{dt} = \widetilde{P}(t)x + \widetilde{q}(t) \text{ for a.a. } t \in I_0 \setminus \{\tau_l\}_{l=1}^{+\infty},$$
(4)

$$x(\tau_{l}+) - x(\tau_{l}-) = \tilde{G}_{l}x(\tau_{l}) + \tilde{g}_{l} \quad (l = 1, 2, \dots),$$
(5)

where $\widetilde{P} \in L_{loc}(I_0, \mathbb{R}^{n \times n}), \ \widetilde{q} \in L_{loc}(I_0, \mathbb{R}^n), \ \widetilde{G}_l \in \mathbb{R}^{n \times n} \ (l = 1, 2, \dots), \ \widetilde{g}_l \in \mathbb{R}^n \ (l = 1, 2, \dots).$

In the paper, we investigate the question when the unique solvability of the problem (1), (2); (3)guarantees the unique solvability of the problem (4), (5); (3) and also nearness of its solutions in the definite sense if matrix-functions P and \widetilde{P} , G_l and \widetilde{G}_l (l = 1, 2, ...), and vector-functions q and \tilde{q} and g_l and \tilde{g}_l (l = 1, 2, ...) are accordingly close to each other.

The analogous problem for systems (1) of ordinary differential equations with singularities are investigated in [2-4].

The singularity of system (1) is considered in the sense that the matrix P and vector q functions, in general, are not integrable at the point b. In general, the solution of the problem (1), (2); (3) is not continuous at the point b and, therefore, it is not a solution in the classical sense. But its restriction on every interval from I_0 is a solution of the system (1), (2). In connection with this we give the example from [4].

Let $\alpha > 0$ and $\varepsilon \in [0, \alpha[$. Then the problem

$$\frac{dx}{dt} = -\frac{\alpha x}{t} + \varepsilon |t|^{\varepsilon - 1 - \alpha}, \quad \lim_{t \to 0} (t^{\alpha} x(t)) = 0$$

has the unique solution $x(t) = |t|^{\varepsilon - \alpha} \operatorname{sgn} t$. This function is not solution of the equation on the set $I = \mathbb{R}$, but its restrictions on $] - \infty, 0[$ and $]0, +\infty[$ are solutions of that.

We give sufficient conditions guaranteeing the well-posedness of the problem (1), (2); (3). The analogous results belong to I. Kiguradze [3, 4] for the modified Cauchy problem for systems of ordinary differential equations with singularities.

Some boundary value problems for linear impulsive systems with singularities are investigated in [1] (see, also references therein).

In the paper, the use will be made of the following notation and definitions.

 \mathbb{N} is the set of all natural numbers.

 $\mathbb{R} =] - \infty, +\infty[, \mathbb{R}_+ = [0, +\infty[, [a, b] \text{ and }]a, b[(a, b \in \mathbb{R}) \text{ are, respectively, closed and open intervals.}$

 $\mathbb{R}^{n \times m}$ is the space of all real $n \times m$ matrices $X = (x_{ij})_{i,j=1}^{n,m}$ with the norm $||X|| = \max_{j=1,\dots,m} \sum_{i=1}^{n} |x_{ij}|$.

If
$$X = (x_{ij})_{i,j=1}^{n,m} \in \mathbb{R}^{n \times m}$$
, then $|X| = (|x_{ij}|)_{i,j=1}^{n,m}$.

$$\mathbb{R}^{n \times m}_{+} = \{ (x_{ij})_{i,j=1}^{n,m} : x_{ij} \ge 0 \ (i = 1, \dots, n; \ j = 1, \dots, m) \}.$$

 $\mathbb{R}^n = \mathbb{R}^{n \times 1}$ is the space of all real column *n*-vectors $x = (x_i)_{i=1}^n$.

If $X \in \mathbb{R}^{n \times n}$, then X^{-1} , det X and r(X) are, respectively, the matrix inverse to X, the determinant of X and the spectral radius of X; I_n is the identity $n \times n$ -matrix.

The inequalities between the matrices are understood componentwise.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its component is such.

X(t-) and X(t+) are, respectively, the left and the right limits of the matrix-function $X : [a,b] \to \mathbb{R}^{n \times m}$ at the point t.

 $\widetilde{C}([a,b],D)$, where $D \subset \mathbb{R}^{n \times m}$, is the set of all absolutely continuous matrix-functions $X : [a,b] \to D$.

 $\widetilde{C}_{loc}(I_0 \setminus \{\tau_l\}_{l=1}^{+\infty}, D)$ is the set of all matrix-functions $X : I_{t_0} \to D$ whose restrictions to an arbitrary closed interval [a, b] from $I_0 \setminus \{\tau_l\}_{l=1}^{+\infty}$ belong to $\widetilde{C}([a, b], D)$.

L([a, b]; D) is the set of all integrable matrix-functions $X : [a, b] \to D$.

 $L_{loc}(I_0; D)$ is the set of all matrix-functions $X : I_0 \to D$ whose restrictions to an arbitrary closed interval [a, b] from I_0 belong to L([a, b], D).

A vector-function $x \in \widetilde{C}_{loc}(I_0 \setminus \{\tau_l\}_{l=1}^{+\infty}, \mathbb{R}^n)$ is said to be a solution of the system (1), (2) if

$$x'(t) = P(t)x(t) + q(t)$$
 for a.a. $t \in I_{t_0} \setminus \{\tau_l\}_{l=1}^{+\infty}$

and there exist one-sided limits $x(\tau_l-)$ and $x(\tau_l+)$ (l=1,2,...) such that the equalities (2) hold. We assume that

 $\det(I_n + G_l) \neq 0 \ (l = 1, 2, ...).$

The above inequalities guarantee the unique solvability of the Cauchy problem for the corresponding nonsingular systems, i.e. for the case when $P \in L_{loc}(I, \mathbb{R}^{n \times n})$ and $q \in L_{loc}(I, \mathbb{R}^{n})$.

Let $\mathcal{N}_{t0} = \{l \in \mathbb{N} : t \leq \tau_l < b\}$ and $I_0(\delta) = [b_0 - \delta, b_0] \cap I_0$ for every $\delta > 0$.

Definition. The problem (1), (2); (3) is said to be *H*-well-posed if it has the unique solution x and for every $\varepsilon > 0$ there exists $\eta > 0$ such that the problem (4), (5); (3) has the unique solution \tilde{x} and the estimate

$$||H(t)(x(t) - \widetilde{x}(t))|| < \varepsilon \text{ for } t \in I$$

holds for every $\widetilde{P} \in L_{loc}(I_0, \mathbb{R}^{n \times n}), \, \widetilde{q} \in L_{loc}(I_0, \mathbb{R}^n), \, \widetilde{G}_l \in \mathbb{R}^{n \times n} \, (l = 1, 2, ...), \, \widetilde{g}_l \in \mathbb{R}^n \, (l = 1, 2, ...)$ such that $\det(I_n + \widetilde{G}_l) \neq 0 \, (l = 1, 2, ...),$

$$\left| \int_{t}^{b-} H^{-1}(s) |\widetilde{P}(s) - P(s)| H(s) \, ds \right\| + \left\| \sum_{l \in \mathcal{N}_{t0}} H^{-1}(\tau_l) |\widetilde{G}_l - G_l| H(\tau_l) \right\| < \eta \text{ for } t \in I_0(\delta)$$

and

$$\left\|\int_{t}^{\theta-} H^{-1}(s)|\tilde{q}(s) - q(s)|\,ds\right\| + \left\|\sum_{l\in\mathcal{N}_{t0}} H^{-1}(\tau_l)|\tilde{g}_l - g_l|\,\right\| < \eta \ \text{ for } t\in I_0(\delta).$$

Let $P_0 \in L_{loc}(I_{t_0}, \mathbb{R}^{n \times n})$ and $G_{0l} \in \mathbb{R}^{n \times n}$ (l = 1, 2, ...). Then a matrix-function $C_0 : I_0 \times I_0 \to \mathbb{R}^{n \times n}$ is said to be the Cauchy matrix of the homogeneous impulsive system

$$\frac{dx}{dt} = P_0(t)x,\tag{6}$$

$$x(\tau_l+) - x(\tau_l-) = G_{0l}x(\tau_l) \quad (l = 1, 2, \dots),$$
(7)

if, for every interval $J \subset I_0$ and $\tau \in J$, the restriction of $C_0(\cdot, \tau) : I_0 \to \mathbb{R}^{n \times n}$ on J is the fundamental matrix of the system (6), (7) satisfying the condition $C_0(\tau, \tau) = I_n$. Therefore, C_0 is the Cauchy matrix of (6), (7) if and only if the restriction of C_0 on $J \times J$, for every interval $J \subset I_0$, is the Cauchy matrix of the system in the sense of definition given in [5].

Theorem. Let there exist a matrix-function $P_0 \in L_{loc}(I_{t_0}, \mathbb{R}^{n \times n})$ and constant matrices $G_l \in \mathbb{R}^{n \times n}$ (l = 1, 2, ...) and $B_0, B \in \mathbb{R}^{n \times n}_+$ such that

$$\det(I_n + G_{0l}) \neq 0 \ (l = 1, 2, ...),$$

$$r(B) < 1,$$

and the estimates

$$|C_0(t,\tau)| \le H(t) B_0 H^{-1}(\tau) \text{ for } b - \delta \le t \le \tau < b, \ \tau \ne \tau_l \ (l = 1, 2, ...),$$
$$|C_0(t,\tau_l)G_{0l}(I_n + G_{0l})^{-1}| \le H(t)B_0 H^{-1}(\tau_l) \text{ for } b - \delta \le t \le \tau_l < b \ (l = 1, 2, ...)$$

and

$$\int_{t}^{b-} |C_{0}(t,\tau)(P(\tau) - P_{0}(\tau))| H(\tau) d\tau + \sum_{l \in \mathcal{N}_{t0}} |C_{0}(t,\tau_{l})G_{0l}(I_{n} + G_{0l})^{-1}| |G_{l} - G_{0l}|H(\tau_{l}) \leq H(t)B \text{ for } t \in I_{0}(\delta)$$

hold for some $\delta > 0$, where C_0 is the Cauchy matrix of the system (5), (6). Let, moreover,

$$\lim_{t \to b} \left(\left\| \int_{t_0}^t H^{-1}(\tau) |C_0(t,\tau)| \, |q(\tau)| \, d\tau \right\| + \left\| \sum_{l \in \mathcal{N}_{t_0}} H^{-1}(\tau_l) |C_0(t,\tau_l) G_{0l}(I_n + G_{0l})^{-1} ||g_l| \right\| \right) = 0.$$

Then the problem (1), (2); (3) is H-well-posed.

References

- M. Ashordia, On the two-point boundary value problems for linear impulsive systems with singularities. *Georgian Math. J.* 19 (2012), no. 1, 19–40.
- [2] V. A. Chechik, Investigation of systems of ordinary differential equations with a singularity. (Russian) Trudy Moskov. Mat. Obshch. 8 (1959), 155–198.
- [3] I. T. Kiguradze, Some Singular Boundary Value Problems for Ordinary Differential Equations. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1975.
- [4] I. Kiguradze, The Initial Value Problem and Boundary Value Problems for Systems of Ordinary Differential Equations. Vol. I. Linear Theory. (Russian) "Metsniereba", Tbilisi, 1997.
- [5] A. M. Samoĭlenko and N. A. Perestyuk, *Impulsive Differential Equations*. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 14. World Scientific Publishing Co., Inc., River Edge, NJ, 1995.